Math, asked by tanishatomar9977, 2 months ago

Find the area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter is 32

cm.​

Answers

Answered by EuphoricBunny
51

☘️ Solution :

Here we have perimeter of triangle = 32 cm, a = 8 cm and b = 11 cm.

Third side c = 32 cm - (8 + 11)cm = 13 cm

\\

So, 2s = 32, i.e., s = 16 cm,

s - a = (16 - 8) cm = 8 cm,

s - b = (16 - 11) cm = 5 cm,

s - c = (16 - 13) cm = 3 cm.

\\

Therefore, area of the triangle

 \sf \:  =  \sqrt{s(s - a) \: (s - a) \: (s - c) }  \\  \\  \sf \:  =  \sqrt{16 \times 8 \times 5 \times 3} \: cm {}^{2}  \\  \\  \sf \:  =   \large \purple{ 8 \sqrt{30}   \: cm {}^{2} }\\ \\

☘️ Answer :

  • 8√30 cm²
Answered by llEuphoriaBunnyll
306

\huge\mathfrak\purple{Answer} \:

8 \sqrt{30}

Solution:-

s(semi-perimeter) and a,b and c are sides of a triangle

using Heron's formula,

 \sqrt{s(s - a)(s - b)(s - c) }  \\ a = 8cm \\ b = 11cm \\ c = 32 - (8 + 11) \sqrt{(16(8)(5)(3)}  \\ c = 32 - 19 \\ c = 13cm \\ s = 8 + 11 +  \frac{13}{2}  = 16 \\  \sqrt{16(16 - 8)(16 - 11)(16 - 13)}  \\  \sqrt{(16(8)(5)(3)}  \\  \sqrt{2* \: 2*2*2*2*2*2*5* 3}  \\ 2* 2* 2*  \sqrt{30}  \\  \\  = 8 \sqrt{30 \:} (is \:  \: the \:  \: correct \:  \: answer \: )

Similar questions