Math, asked by RehanAhmadXLX, 1 year ago

Find The Area Of A Triangle Using Heron's Formula Whose Sides Are 3cm, 4cm and 5cm.


viraj38: its too easy
viraj38: Pythagoras triplet
viraj38: 6 is the ans
viraj38: by using herons
viraj38: √6(6-3)(6-4)(6-5)
viraj38: =6

Answers

Answered by rohitkumargupta
64
HELLO DEAR,

we know that:-
the semi perimeter of a triangle is

s = (a+b+c)/2

where

a=3cm,b=4cm ,c=5cm

s = \frac{3 + 4 + 5}{2} \\ \\ = > s = \frac{12}{2} = 6cm

we also know that the:-

by HERON'S FORMULA

AREA of triangle =
 \sqrt{s(s - a)(s - b)(s - c)} \\ \\ = > \sqrt{6(6 - 3)(6 - 4)(6 - 5)} \\ \\ = > \sqrt{6 \times 3 \times 2 \times 1} \\ \\ = > \sqrt{6 \times 6} = 6cm^{2}

I HOPE ITS HELP YOU DEAR,
THANKS
Answered by siddhartharao77
30
Given sides are 3cm, 4cm and 5cm.

We know that semi-perimeter of a triangle s = a + b + c/2

                                                                          = 3 + 4 + 5/2

                                                                          = 12/2

                                                                          = 6cm.



Using Heron's formula, we know that Area of the triangle:

= \sqrt{s(s-a)(s-b)(s-c)}

= \sqrt{6(6 - 3)(6 - 4)(6 - 5)}

= \sqrt{6(3)(2)(1)}

= \sqrt{36}

6 cm^2.


Therefore the area of triangle = 6cm^2.


Hope this helps!
Similar questions