Math, asked by molletisreebharath, 2 months ago

Find the area of a triangle using heron's formula whose sides are- A = 12cm B = 24 C=14cm

Answers

Answered by jaiurmil751
1

Answer:

side A=12cm , side B=24cm, side C=14 cm

perimeter of 3 sides= 12+24+14= 50cm

semi-perimeter = 50÷2 =25cm

area of triangle = s√(s-a)(s-b)(s-c)

=25√(25-12)(25-24)(25-14)

25√13×1×11

25√143

√3575

=59.7913

Answered by faisalfiroz02
0

Given: Sides of a triangle are 12cm,24cm and 14cm.

To find: Area of the triangle using Heron's formula.

Solution: S = 12+24+14/2 = 25cm.

Area of the triangle =

 s\sqrt{(s - a)(s - b)(s - c)} \:  \:  \:  \:  \:  \:  \:   \\ =  >   25\sqrt{(25-12)(25-24)(25-14)}  \\  =  > 25 \sqrt{13 \times 1 \times 11} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\   =  > 25\sqrt{163} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  =  > 319.17 {cm}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hope it helps you.

Similar questions