Math, asked by pankajbhosal4665, 1 year ago

Find the area of a triangle who's perimeter is 180cm and two of its sides are 80cm and 18cm. Also calculate the altitude of triangle corresponding to the shortest sides

Answers

Answered by sasmitasamal82p1b5wx
7
Let the third side be x

Perimeter of triangle=Sum of its sides

180=80+18+x

180-98=x

x=82 cm

Let a=80cm b=18cm and c=82cm

s=a+b+c/2

=80+18+82/2

=180/2

=90cm

From heron's formula

Area of triangle=√s(s-a)(s-b)(s-c)

=√90(90-80)(90-18)(90-82)

=√90*10*72*8

=√9*10*10*9*8*8

=9*10*8

=720cm2

Area of trangle=1/2 x b x h

720=1/2*18*h (since the shortest side is 0f 18cm)

720=9h

720/9=h

80cm=h


Answered by Anonymous
4

\huge{\underline{\underline{\red{♡Solution→}}}}

__________________________

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

Sides,

a = 80

b = 18

perimeter (p) = 180

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

Altitude of Triangle or the height (h) of Triangle.

__________________________

The herons formula to find Area of Triangle is :

area(a) =  \sqrt{s(s - a)(s - b)(s - c)}

Where s is half perimeter.

s =  \frac{a + b + c}{2}

__________________________

\purple{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

P = 180

We know that

  • P = a + b + c

So,

a + b + c = 180

80 + 18 + c = 180

c = 180 - 98

c = 82

s =  \frac{80+18+82}{2}  \\ s =  \frac{180}{2}

s = 90

Now Area is ,

a =  \sqrt{90(90-80)(90-18)(90-82)}  \\ a =  \sqrt{90 \times 10 \times 72 \times 8}

a =  \sqrt{518400}

\boxed{a =720 }

Now We know that -

a =  \frac{1}{2}  \times  width (b) \times height (h)

So,

720 =  \frac{1}{2}  \times  18 \times (h)

720 =  9 \times (h)

h =  \frac{720}{9}

\boxed{h = 80\:cm}

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions