Find the area of a triangle whose perimeter is 180cm and 2 of its sides are 80cm and 18cm. also find the altitude of the triangle corrosponding to the longest side as the base.
Answers
Answer:
Perimeter = 180cm
=x+80cm+18cm=180cm
=x=180cm-98cm
=x=82cm
then,
semi perimeter,s=perimeter/2
=180cm/2
=90cm
By Heron's formula,
Area = √[90(90-82)(90-80)(90-18)]
=√(90×8×10×72)
=720cm²
Area = 720cm²
=(1/2)bh=720cm²
=(1/2)×82cm×h=720cm²
=h=(720cm²×2)/82cm
=h=17.56cm
Thus ,
Area =720cm²
altitude =17.56
Answer:
1) Let third side be x
∴ x + 80 + 18 = perimeter = 180
⇒ x = 180 - 98
⇒ x =82cm
2) s= p/2
⇒ s= 180/2 = 90cm
area of triangle = √s(s-a)(s-b)(s-c) [herons formula]
= √90(90-80)(90-18)(90-82)
=√90(10)(72)(8)
=√3(3)(5)(2)(5)(2)(2)(2)(2)(3)(3)(2)(2)(2) [factorization]
= 3(5)(2)(2)(2)(2)(3)
=720 cm^{2}
3) area of triangle = (1/2)bh
⇒ 720 = (1/2)82h
⇒ h = 720/41
⇒ h = 17.5 cm