Find the area of a triangle whose side length is 50 cm with the help of Heron's formula.
Answers
Answered by
2
Answer:
Answer :-
{\underline{\boxed{\sf Area = 200\sqrt{6}}}
Step-by-step explanation :-
Heron's Formula :-
\sqrt{s(s-a)(s-b)(s-c)}
s(s−a)(s−b)(s−c)
-----------------------------------
S = a + b + c /2
= 50 + 50 + 20/2
= 120/2
= 60
-----------------------------------
Substituting values in formula :-
= \sqrt{s(s-a)(s-b)(s-c)}
s(s−a)(s−b)(s−c)
= \sqrt{60(60-50)(60-50)(60-20)
= \sqrt{60*10*10*40}
60∗10∗10∗40
= \sqrt{2*2*3*5*2*5*2*5*2*2*2*5}
2∗2∗3∗5∗2∗5∗2∗5∗2∗2∗2∗5
= 200\sqrt{6}200
6
------------------------------------
Therefore the area of triangle is 200√6
Similar questions