Math, asked by rakendhuhc, 2 months ago

Find the area of a triangle whose sides are 12 cm , 6 cm & 10cm.

Please dont answer if you dont know ​

Answers

Answered by SachinGupta01
10

\bf \underline{ \underline{\maltese\:Given} }

 \sf \: Sides  \: of  \: triangle \:  are  \: 12 \:  cm , \:  6  \: cm  \: and \:  10  \: cm.

\bf \underline{ \underline{\maltese\:To \:  find } }

 \sf \implies Area  \: of \:  triangle = \:  ?

\bf \underline{ \underline{\maltese\:Solution  } }

\sf Using \: Heron's \: formula :

\underline{\boxed{\sf{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}}}

\bf \underline{ Now},

\sf \implies s \: = \: \dfrac{a + b + c}{2}

\sf \implies s \: = \: \dfrac{12 +6 + 10}{2}

\sf \implies s \: =  \:  \cancel\dfrac{28}{2}

\sf \implies s \: =  \:  14

\underline{ \sf \: Thus, \: semi-perimeter = 14\:cm }

\bf \underline{Now}, \sf \: area \: of \: triangle :

\sf{Area_{\triangle} = \sqrt{s(s - a)(s - b)(s - c)}}

 \sf Substitute  \: the \:  values,

\sf{Area = \sqrt{14(14 - 12) (14 - 6) (14- 10)}}

\sf{Area = \sqrt{14 \times 2 \times    8 \times  4}}

\sf{Area = \sqrt{2 \times 7 \times 2 \times 2 \times 2 \times 2 \times  2 \times 2}}

\sf{Area =2 \times 2 \times 2 \sqrt{2 \times 7  }}

\sf{Area =8 \sqrt{14  }} \: cm ^{2}

 \underline{ \boxed{ \red{ \bf Therefore, \:area \:of\:triangle = 8 \sqrt{14}  \: cm^2}}}

━━━━━━━━━━━━━━━━━━━━━━━━

\bf  \underline{Some\: related\: formulas} :

\bf{1.}\:  \sf Area  \: of  \: equilateral \:  triangle =  \dfrac{ \sqrt{3}}{4}   a^{2}

2. Area of triangle with given base and corresponding altitude :

\sf \implies   \dfrac{1}{2}  \times base  \times corresponding  \: altitude

3. Area of a right triangle :

\sf \implies   \dfrac{1}{2}  \times Product \:of\: two\: sides\: containing\:  right\: angle

Similar questions