Music, asked by anushkarajjaiswal, 4 months ago

Find the area of a triangle whose sides are 28cm, 21cm and 35cm.
Also, find the length of the altitude corresponding to the largest side
of the triangle.​

Answers

Answered by spbankingandsscserie
12

Answer:

Area = 294cm²

Altitude = 16.8cm

 ☣ \large \rm\bf{Given}

Sides of a triangle = 28 cm, 21 cm and 35 cm

☣ \large\rm \bf{Find}

  1. Area of a triangle
  2. Length of the altitude corresponding to the largest side of a triangle

☣ \large\rm\bf{Instructions}

Let a = 28cm , b = 21cm and c = 35cm

Then,

s = \frac{1}{2}(28 + 21 + 35) = 42

(s - a) = (42 - 28) = 14

(s - b) = (42 - 21) = 21

(s - c) = (42 - 35) = 7

 ☣ \large\rm\bf{Explanation}

  \small\rm{ Area \:  of  \: a  \: triangle = \sqrt{s(s - a)(s - b)(s - c)}}

 \small\rm{ ⤍  \sqrt{42 \times 14 \times 21 \times 7 } {cm}^{2}}

 \small\rm{ ⤍ \sqrt{21 \times 2 \times 7 \times 2 \times 21 \times 7}  \:  {cm}^{2}}

 \small\rm{ ⤍(21 \times 2 \times 7) {cm}^{2}}

 \small\rm {⤍294 \:  {cm}^{2}}

Area = 294cm²

Largest side = 35cm

Let the altitude corresponding to largest side be h cm

Then,

 \small\bf Area  \: of \:  the \:  traingle = ( \frac{1}{2}  \times 35 \times h) {cm}^{2}

 \small\rm{ ⤍ \frac{1}{2} \times 35 \times h = 294 }

 \small\rm{⤍ \: 35 \times h =294 \times 2 }

 \small\rm{ h =  \frac{294 \times 2}{35} cm}

 \small\rm {h = 16.8cm}

Hence, the required altitude is 16.8cm

Similar questions