Math, asked by kelvinthomasgamer, 5 months ago

Find the area of a triangle whose sides are 5 cm ,12 cm and 13 cm . Also find the length of its altitude corresponding to the longest side. ​

Answers

Answered by AestheticSoul
8

Given

• Sides of a triangle -

  • Length = 5 cm
  • Breadth = 12 cm
  • Height = 13 cm

To find

  • Area of triangle.
  • Length of its altitude corresponding to the longest side.

Solution

To find area of triangle. We will use Heron's formula.

  • Heron's formula -

\red{ \bigstar}  \boxed{\sf \green{Heron's \: formula \:  =  \sqrt{s(s - a)(s - b)(s - c)}}}

  • To find s -

\red{ \bigstar}  \boxed{\sf \green{s = \frac{a + b + c}{2}}}

Substituting the given values -

 \sf{s =  \dfrac{5 + 12 + 13}{2} }

 \sf{s =  \dfrac{30}{2} }

 \sf{s =   \cancel{\dfrac{30}{2}}}

\blue{\bigstar} s = 15

:  \implies\sf{Heron's \: formula \:  =  \sqrt{s(s - a)(s - b)(s - c)}}

:  \implies\sf{ \sqrt{15(15 - 5)(15 - 12)(15 - 13)}}

:  \implies\sf{ \sqrt{15(10)(3)(2)}}

:  \implies\sf{ \sqrt{900}}

:  \implies\sf{30}

\green{\bigstar} \large\boxed{\sf{\red{Area~of~triangle~= 30~cm^2}}}

━━━━━━━━━━━━━━━━━━━━━━

(II) Length of its altitude corresponding to the longest side.

• Longest side = 13 cm

Area = \sf{\dfrac{1}{2}} × base × height

\implies \sf{\dfrac{1}{2} \times 13 \times height}

\green{\bigstar} \large\boxed{\sf{\red{Length~of~its~altitude~corresponding~to~the~longest~side= 4.615~cm}}}

━━━━━━━━━━━

• Know more -

There three types of triangle -

  • Equilateral triangle
  • Isosceles triangle
  • Scalene triangle 

Equilateral triangle -

  • In this all three sides are equal.

  • Area of equilateral triangle -

\sf{\dfrac{\sqrt{3}}{4}a^2}

  • Perimeter of equilateral triangle -

↬ 3a

where,

a = side of triangle

Isosceles triangle -

  • In this two sides of triangle are equal.

  • Area of isosceles triangle -

\sf{\dfrac{1}{2} \times base \times height}

  • Perimeter of isosceles triangle -

↬ 2a + b

Scalene triangle -

  • In this no side is equal.

  • Area of scalene triangle -

↬ Heron's formula = \sf{\sqrt{s(s - a)(s - b)(s - c)}}

  • Perimeter of scalene triangle -

↬ Perimeter = Sum of all three sides

Answered by Anonymous
25

GivEn:

  • Sides of ∆ = 5 cm, 12 cm and 13 cm

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Area of the triangle.
  • Length of altitude corresponding to the largest side of the ∆.

⠀⠀⠀⠀⠀⠀⠀

Solution:

\frak{Here} \begin{cases} & \sf{a = 5\;cm}  \\ & \sf{b = 12\;cm} \\ & \sf{c = 13\;cm} \end{cases}\\ \\

✇ Finding semi - perimeter of ∆,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf s = \dfrac{a + b + c}{2}\\ \\

:\implies\sf s = \dfrac{5 + 12 + 13}{2}\\ \\

:\implies\sf s = \cancel{\dfrac{30}{2}}\\ \\

:\implies\bf s = 15\;cm\\ \\

✇ Now, Finding area of triangular field using Heron's Formula,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area = \sqrt{s(s - a)(s - b)(s - c)}}}}}\\ \\

:\implies\sf \sqrt{15 (15 -5 )(15 - 12)(15 - 13)}\\ \\

:\implies\sf \sqrt{15 \times 10 \times 3 \times 2}\\ \\

:\implies\sf \sqrt{900}\\ \\

:\implies{\boxed{\frak{\pink{30\;cm^2}}}}\;\bigstar\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

✇ Now, Finding length of altitude corresponding to the largest side of the ∆.

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\linethickness{0.3mm}\qbezier(1, 0)(1,0)( 3,3)\qbezier(5,0)(5, 0)(3,3)\qbezier(5,0)(1,0)(1,0)\qbezier(1,0)(1,0)(4,1.5)\put(2.8,3.2){$\sf A$}\put(2.5, - 0.3){5 cm}}\put(0.5,-0.2){\sf B}\put(4.5,1){12 cm}\put(5.1, - 0.3){\sf C}\put(1.1,1.8){13 cm}\put(4.2, 1.5){\sf D}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\boxed{ $ \bf @ValiantPrinceiss $}}\end{picture}

Here,

Largest side of triangular field is = 13 cm.

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area = \dfrac{1}{2} \times (base) \times (height)}}}}\\ \\

:\implies\sf 30 = \dfrac{1}{2} \times {13} \times (height)\\ \\

:\implies{\boxed{\frak{\pink{Height = 4.615\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;length\;of\; altitude\;is\; \bf{4.615\;cm}.}}}

Similar questions