Math, asked by shaily224, 10 months ago

find the area of a triangle whose sides are in ratio 5:12:13 and its perimeter is 60cm​

Answers

Answered by Anonymous
15

AnswER :

\bf{\Large{\underline{\sf{Given\::}}}}

Triangle whose sides are in the ratio 5:12:13 and its perimeter is 60 cm.

\bf{\Large{\underline{\sf{To\:find\::}}}}

The area of triangle.

\bf{\Large{\underline{\tt{\pink{Explanation\::}}}}}

Let the ratio be R.

\bf{We\:have}\begin{cases}\sf{1st\:side\:of\:\triangle\:=\:5R}\\ \sf{2nd\:side\:of\:\triangle\:=\:12R}\\ \sf{3rd\:side\:of\:\triangle\:=\:13R}\end{cases}}

A/q

|\implies\sf{Perimeter\:of\:\triangle\:=\:60cm}\\\\\\|\implies\sf{5R+12R+13R\:=\:60}\\\\\\|\implies\sf{30R\:=\:60}\\\\\\|\implies\sf{R\:=\:\cancel{\dfrac{60}{30} }}\\\\\\|\implies\sf{\pink{R\:=\:2\:cm}}

So,

  • 1st triangle = (5*2)cm = 10 cm
  • 2nd triangle = (12*2)cm = 24 cm
  • 3rd triangle = (13*2)cm = 26 cm

\bigstar\rm{\large{\underline{Using\:Heron's\:Formula\::}}}}

|\hookrightarrow\sf{Semi-perimeter\:(S)\:=\:\dfrac{A+B+C}{2} }\\\\\\|\hookrightarrow\sf{Semi-perimeter\:(S)\:=\:\dfrac{10cm+24cm+26cm}{2} }\\\\\\|\hookrightarrow\sf{Semi-perimeter\:(S)\:=\:\cancel{\dfrac{60cm}{2} }}\\\\\\|\hookrightarrow\sf{\pink{Semi-perimeter\:(S)\:=\:30cm}}

Now,

|\hookrightarrow\sf{Area\:of\:triangle\:=\:\sqrt{S(S-A)(S-B)(S-C)} }\\\\\\|\hookrightarrow\sf{Area\:of\:triangle\:=\:\sqrt{30(30-10)(30-24)(30-26)} }\\\\\\|\hookrightarrow\sf{Area\:of\:triangle\:=\:\sqrt{30(20)(6)(4)} }\\\\\\|\hookrightarrow\sf{Area\:of\:triangle\:=\:\sqrt{2*3*5*2*2*5*2*3*2*2}} \\\\\\|\hookrightarrow\sf{Area\:of\:triangle\:=\:(2*2*2*3*5)cm^{2} }\\\\\\|\hookrightarrow\sf{\pink{Area\:of\:triangle\:=\:120cm^{2} }}

Thus,

The area of triangle is 120 cm².

Attachments:
Answered by Anonymous
5

Let the sides be =>

  • a =5x
  • b =12x
  • c =13x

Perimeter =60cm (given)

So,

5x+12x+13x =60

=> 30x=60

=> x=2cm

NOW,

a=5x=5×2=10cm

b=12x=2×2=24cm

c=13x=13×2=26cm

 \mathbf \red{area \: of \: right \:  traingle}

1/2×base×height

=>1/2×24×10

=>120 cm²

Similar questions