Math, asked by abhi1882, 1 year ago

find the area of a triangle whose sides are respectively 150 cm 120 cm and 200 CM

Answers

Answered by shubh1729
17
first side=150cm
second side=120cm
third side=200cm
Semiperimeter, S=(a+b+c)/2=(150+120+200)/2 =235 cm 
Hence area of hte tringle( Using Hero's Formula )= √{S(S−a)(S−b)(S−c)} 
=√{235(235−150)(235−120)(235−200)} 
=√{235(85)(115)(35)}=8966.57 cm²
Answered by shadowsabers03
45

Find the area using Heron's Formula.


 a = 150cm \\ b = 120 cm \\ c = 200 cm \\ \\ \\ s = \frac{a + b + c}{2} = \frac{150 + 120 + 200}{2} = \frac{470}{2} = 235 cm \\ \\ \\ A = \sqrt{s(s - a)(s - b)(s - c)} \\ \\ = \sqrt{235(235 - 150)(235 - 120)(235 - 200)} \\ \\ = \sqrt{235 \times 85 \times 115 \times 35} \\ \\ = \sqrt{47 \times 5 \times 5 \times 17 \times 23 \times 5 \times 5 \times 7} \\ \\ = 5 \times 5 \ \sqrt{47 \times 17 \times 23 \times 7} \\ \\ = 25 \sqrt{128639} \ cm^2


Hope this may be helpful.


Please mark my answer as the brainliest if this may be helpful.


Thank you. Have a nice day.

Similar questions