Math, asked by gitanjalisati3, 7 months ago

Find the area of a triangle whose vertices are (2,- 3), (4,2) and (7,6) respecively.

Answers

Answered by VishnuPriya2801
38

Answer:-

Given:

Vertices of a triangle are (2 , - 3) , (4 , 2) & (7 , 6).

We know that,

Area of a triangle with vertices (x₁ , y₁) , (x₂ , y₂) &  \sf (x_3 , y_3) is :

 \sf \:  \dfrac{1}{2}  \begin{vmatrix} \sf \: x _{1} - \sf x _{2} &  \sf \: x _{1} - x _{3} \\  \\ \sf \: y _{1} - y _{2}& \sf \: y _{1} - y _{3} \end{vmatrix}

Let,

  • x₁ = 2

  • x₂ = 4

  •  \sf x_3 = 7

  • y₁ = - 3

  • y₂ = 2

  •  \sf y_3 = 6.

Hence,

\implies \sf Area\: of\: the\: triangle= \frac{1}{2} \begin{vmatrix} \sf 2 - 4 & \sf 2 - 7 \\\\\ \sf - 3 - 2 & \sf -3-6 \end{vmatrix} \\\\\implies\sf Area\: of\: the\: triangle= \frac{1}{2} \begin{vmatrix} \sf - 2 & \sf - 5 \\\\\sf - 5& \sf -9 \end{vmatrix} \\\\  \implies \sf Area \:of \:the \:triangle=\frac{1}{2} \begin{vmatrix} \sf { ( -2)(-9)  -( - 5)(-5) }\end{vmatrix} \\\\\implies \sf Area\: of\: the\: triangle  =  \frac{1}{2} \times 7\\\\\implies \large{\sf Area\:of\:the\: triangle=\frac{7}{2} \:\: unit^2}

Answered by Anonymous
6

Answer:-

Given:

Vertices of a triangle are (2 , - 3) , (4 , 2) & (7 , 6).

We know that,

Area of a triangle with vertices

((x₁ , y₁) , (x₂ , y₂) &amp;  \\ \sf (x_3 , y_3)(x </p><p>3</p><p>	</p><p> ,y </p><p>3</p><p>	</p><p> ) is : \\  \\ </p><p></p><p>\begin{gathered}\sf \: \dfrac{1}{2} \begin{vmatrix} \sf \: x _{1} - \sf x _{2} &amp; \sf \: x _{1} - x _{3} \\ \\ \sf \: y _{1} - y _{2}&amp; \sf \: y _{1} - y _{3} \end{vmatrix}\end{gathered} </p><p>

Let,

x₁ = 2 \\ </p><p>x₂ = 4 \\ </p><p>\sf x_</p><p>3</p><p>	</p><p>  = 7

y₁ = - 3 \\ </p><p>y₂ = 2 \\ </p><p>\sf y3 = 6</p><p></p><p>

Hence,

\begin{gathered}\implies \sf Area\: of\: the\: triangle= \frac{1}{2} \begin{vmatrix} \sf 2 - 4 &amp; \sf 2 - 7 \\\\\ \sf - 3 - 2 &amp; \sf -3-6 \end{vmatrix} \\\\\implies\sf Area\: of\: the\: triangle= \frac{1}{2} \begin{vmatrix} \sf - 2 &amp; \sf - 5 \\\\\sf - 5&amp; \sf -9 \end{vmatrix} \\\\ \implies \sf Area \:of \:the \:triangle=\frac{1}{2} \begin{vmatrix} \sf { ( -2)(-9) -( - 5)(-5) }\end{vmatrix} \\\\\implies \sf Area\: of\: the\: triangle = \frac{1}{2} \times 7\\\\\implies \large{\sf Area\:of\:the\: triangle=\frac{7}{2} \:\: unit^2}\end{gathered}

Similar questions