Math, asked by gowdatarun9530, 11 months ago


Find The area of a triangle whose vertices are (5,0),(8,0) and (8,4)​

Answers

Answered by samujadhav464
1

Answer:

6 sq.units

Step-by-step explanation:

find the length of the sides using distance formula for the three vertices. you'll find the triangle to be a right angled triangle so ; u can take any side as the height another the base but make sure not to take the hypotenuse as the base or height

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=6\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (5,0) } \\  \\ \tt{: \implies Coordinate \: of \: B = (8,0) } \\  \\ \tt{: \implies Coordinate \: of \: C = (8,4) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |5(0 - 4) + 8(4 - 0) + 8(0 - 0)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |5 \times -4 +  8\times 4 + 8 \times 0 | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |-20+32 + 0| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 12} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =6 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions