Math, asked by blazingwish66, 4 months ago

Find the area of a triangle whose vertices are (6,3)(-3,5)(4,-2)

Answers

Answered by SarcasticL0ve
9

Given:

  • Vertices of triangle are (6,3) , (-3,5) , (4, - 2).

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Area of triangle?

⠀⠀⠀⠀⠀⠀⠀

Solution:

\setlength{\unitlength}{1.2cm}\begin{picture}(0,0)\linethickness{0.4mm}\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(5,0)(1,0)\put(2.7, 3.3){\sf (6,3)}\put(0.5,  - 0.4){\sf (-3,5)}\put(4.8,  -0.4){\sf (4, - 2)}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

Here,

⠀⠀⠀⠀⠀⠀⠀

  • x₁ = 6
  • y₁ = 3
  • x₂ = - 3
  • y₂ = 5
  • x₃ = 4
  • y₃ = - 2

⠀⠀⠀⠀⠀⠀⠀

★ Now, Finding area of Triangle,

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Area\;of\; \triangle = \dfrac{1}{2} \bigg[ 6(5 + 2) + (-3)(-2 - 3) + 4(3 - 5) \bigg]}}}}\\ \\

:\implies\sf \dfrac{1}{2} \bigg[ 6 \times 7 - 3 \times (-5) + 4(-2) \bigg]\\ \\

:\implies\sf \dfrac{1}{2} \bigg[ 42 + 15 - 8 \bigg]\\ \\

:\implies\sf \dfrac{1}{2} [ 49 ]\\ \\

:\implies{\boxed{\sf{\pink{24.5\;sq\;units}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Area\;of\;triangle\;is\; \bf{24.5\;sq\;units}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}} \\  \\

  • Distance Formula = \sf \sqrt{(x_2 - x_1) + (y_2 - y_1)}

⠀⠀⠀⠀⠀⠀⠀

  • Section Formula = \sf (x,y) = \bigg( \dfrac{m_2 x_1 + m_1 x_2}{m_1 + m_2} \;,\; \dfrac{m_2 y_1 + m_1 y_2}{m_1 + m_2} \bigg)
Answered by Anonymous
51

\huge\bold{\underline{Question:}}

Find the area of a triangle whose vertices are (6,3)(-3,5)(4,-2)

\huge\bold{\underline{Answer:}}

Given:

Let A(6, 3), B(-3, 5) and C(4,-2) be the given points.

To find:

Find the area of the triangle

Solution:

We know that,

are of a triangle

\boxed{\bf{\red{\dfrac{1}{2}[x₁(y₂ - y₃)+x₂(y₃ - y₁)+x₃(y₁ - y₂)]}}}

Here,

x₁ = 6, y₁ = 3, x₂ = -3, y₂ = 5, x₃ = 4, y₃ = -2

Area of the triangle\sf{\implies \dfrac{1}{2}[6(5+2)+(-3)(-2-3)+4(3-5)]}

\sf{\implies \dfrac{1}{2}[6×7-3×(-5)+4(-2)]}

\sf{\implies \dfrac{1}{2}[42+15-8]}

\sf{\implies \dfrac{49}{2}}

\sf{\implies 24.5\:sq.units}

Therefore,

Area of the triangle is 24.5 sq.units.

___________________________________


KARTIKAYRANA: hello
KARTIKAYRANA: can we friends
Anonymous: Abe tu idhar
Anonymous: xD
Anonymous: ruk
KARTIKAYRANA: m kuch smja nahi
Anonymous: ruk ruk abhi samjhati
KARTIKAYRANA: okey
KARTIKAYRANA: muje dar lg rha h
Similar questions