Math, asked by kavithanarayan1996, 10 months ago

find the area of a triangle whose vertices are (8, 1), (3, -4),and (2, -5).​

Answers

Answered by upasanajoshi11pd1ne9
0

Answer:

ans is 0

Step-by-step explanation:

i hope it helps u mark me brainlist of ans is right

Attachments:
Answered by Anonymous
1

Solution:

The coordinate of the vertices of the given triangle are

 \rm \: A(x_1 = 8,y_1 = 1),B(x_2 = 3,y_2 =  - 4) \: and \: C(x_3 = 2,y_3 =  - 5)

Formula

 \boxed{ \rm \: ar(</em></strong><strong><em>\</em></strong><strong><em>Delta</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>:</em></strong><strong><em> </em></strong><strong><em>ABC) =   \dfrac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 -y _2)| }

by putting the value on formula

\rm \: ar(∆ABC) =   \dfrac{1}{2} |8( - 4 -( - 5) )+ 3( - 5 - 1) + 2(1-( - 4))|

 \rm=   \dfrac{1}{2} |8( - 4  + 5)+ 3(  - 6) + 2(1 + 4)|

 \rm=   \dfrac{1}{2} |8( 1)+ 3(  - 6) + 2(5)|

\rm=   \dfrac{1}{2} |8 - 18 + 10|

\rm=   \dfrac{1}{2} |18 - 18 |

 = 0

Its mean given point are collinear

Similar questions