Math, asked by tskmara1, 7 hours ago

Find the area of a triangle whose verticis are A ( 1 , -1) B ( -4, 6 ) C (-3, 5)​

Answers

Answered by Starrex
42

\bigstar\leadsto\boxed{\large\bf\red{Area=24\: square\:units }}

_____________________________________________

\large\bf\underline{Correction\:in\: question:}

  • ➠ Find the area of a triangle whose verticis are A ( 1 , -1) B ( -4, 6 ) C (-3, -5)

_____________________________________________

\large\bf\underline{Given:}

  • ➨ A = ( 1 , -1 )
  • ➨ B = ( -4 , 6 )
  • ➨ C = ( -3 , -5 )

\large\bf\underline{Area\:of\: triangle\:ABC:}

\underline{\boxed{\bf\pink{= \frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]}}}

\large\bf\underline{Here,}

  • \tt{x_{1}=1}
  • \tt{x_{2}=-4}
  • \tt{x_{3}=-3}
  • \tt{y_{1}=-1}
  • \tt{y_{2}=6}
  • \tt{y_{3}=-5}

\large\bf\underline{Putting\:values:}

\bf{⟼\frac{1}{2}\times [1(6-(-5))+(-4)(-5)-(-1))+(-3)(-1-6)]}

\bf{⟼\frac{1}{2}\times [1(6-(-5))+(-4)((-5)+1)+(-3)(-7)]}

\bf{⟼\frac{1}{2}\times [1(6+5)+(-4)(-5+1)+(-3)(-7)]}

\bf{⟼\frac{1}{2}\times [1(11)+(-4)(-4)+(-3)(-7)]}

\bf{⟼\frac{1}{2}\times[11+16+21]}

\bf{⟼\frac{1}{2}\times 48}

\bf{⟼24}

\underline{\boxed{\bf{Hence,\:area=24 \:square\:units }}}

_________________________________________

\bigstar\tt\red{Note:} Slide left to view full answer !

Similar questions