Math, asked by kavyaas775, 3 months ago


Find the area of a triangle with vertices (-2, -3), (3, 2) and (-1,-8).​

Answers

Answered by Anonymous
8

\sf{Answer}

Given :-

Vertices of triangle (-2 , -3 ) ,( 3, 2 ) and ( -1 , -8 )

To find :-

  • Area of triangle

Formula to know :-

Area of triangle =

 \frac{1}{2}  | \: x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)  \: |

Solution :-

Vertices (-2 , -3) , (3 , 2) and (-1 , -8 )

{x_1 = -2}

{x_2 = 3}

{x_3 = -1}

{y_1 = -3}

{y_2 = 2}

{y_3 = -8}

Substituting values in above formula

\frac{1}{2}  | \: x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)  \: |

 \frac{1}{2}  | - 2(2 - ( - 8)) + 3( - 8 - ( - 3))  - 1( - 3 -2) |

 \frac{1}{2}  | - 2(2 + 8) + 3( - 8 + 3) - 1( - 5)|

 \frac{1}{2}  | - 2(10) + 3(-5) + 5|

 \frac{1}{2}  | - 20 -15+ 5|

 \frac{1}{2}  | - 30|

 \frac{30}{2}

{15 sq.units}

So, area of triangle is 15 sq.units

__________________

Know more :-

Distance formula:-

\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

Centroid formula:-

\dfrac{x_1+x_2+x_3}{3},\dfrac{y_1+y_2+y_3}{3}

Section formula Internal

division:-

\dfrac{mx_2+nx_1}{m+n}, \dfrac{my_2+ny_1}{m+n}

Section formula External division:-

\dfrac{mx_2-nx_1}{m-n}, \dfrac{my_2-ny_1}{m-n}

Answered by kurawen
2

Answer:

दुफ्फुद्ज युक्सफीय इफूप अच्छी

Similar questions