Math, asked by prince2529, 7 months ago

find the area of a triangle with vertices A(1,1),B(1,-4)&C(5,-2)​

Answers

Answered by Anonymous
2

\sf\huge\pink{\underbrace{ Solution : }}

\tt\large\blue{\underline{\bigstar{ Given\:that: }}}

◼ Vertices of a triangle are :

  • A(1,1)
  • B(1,-4)
  • C(5,-2)

\tt\large\green{\underline{\bigstar\:{To\:find: }}}

◼ Area of the Triangle.

\tt\large\orange{\underline{\bigstar\:{Formula : }}}

By using Area of the triangle formula :

\boxed{\rm{\red{ \triangle = \cfrac{1}{2} | x_{1}(y_{2} - y_{3}) + x_{2}(y_{3} - y_{1})+x_{3}(y_{1}-y_{2})| }}}

\tt\large\purple{\underline{\bigstar\:{Let : }}}

  • x1 = 1 ; y1 = 1
  • x2 = 1 ; y2 = - 4
  • x3 = 5 ; y3 = -2

\sf \implies \cfrac{1}{2} | 1(-4-(-2)) + 1(-2-1) + 5(1-(-4)) |

\sf \implies \cfrac{1}{2} | 1(-4+2) + 1(-3) + 5(1+4) |

\sf \implies \cfrac{1}{2} | 1(-2) -3 + 5(5) |

\sf \implies \cfrac{1}{2} | -2 -3 + 25 |

\sf \implies \cfrac{1}{2} | 20 |

\sf \implies \cancel{\cfrac{20}{2}}= 10

\underline{\boxed{\rm{\purple{\therefore Area\:of\:Triangle =10\:sq.units.}}}}\:\orange{\bigstar}

Answered by Anonymous
1

 \tt \huge{ \underline{ \underline{ \red{Question :  - }}}}

find the area of a triangle with vertices A(1,1),B(1,-4)&C(5,-2)

 \tt \huge{ \underline{ \underline{ \red{Answer :  - }}}}

we know that,

 {\star {\boxed{ \bf{ \blue{area \:  \:  of  \:  \triangle \: =1/2[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]}}}}}

 \sf  \large  \star \: x_1 = 1 \\  \\ \sf  \large  \star \: x_2 = 1 \\  \\ \sf  \large  \star \: x_3 = 5 \\  \\ \sf  \large  \star \: y_1 = 1 \\  \\ \sf  \large  \star \: y_2 =  - 4 \\  \\ \sf  \large  \star \: y_3 =  - 2

substitute in Formula:-

 \tt  \large : \implies \:  \frac{1}{2}   [1( - 4) - ( - 2) + 1( - 2 - 1) + 5(1) - ( - 4)] \\ \tt  \large : \implies \:  \frac{1}{2}   [1( - 4 + 2) + 1( - 3) + 5(1 + 4)] \\  \\ \tt  \large : \implies \:  \frac{1}{2}   [1( - 2) - 3 + 5(5)] \\  \\ \tt  \large : \implies \:  \frac{1}{2}   [ - 2 - 3 + 25] \\  \\ \tt  \large : \implies \:  \frac{1}{2}   [ - 5 + 25] \\  \\ \tt  \large : \implies \:  \frac{1}{2}   [20 ] \\  \\ \tt  \large : \implies \:  10

Area of triangle () is 10 sq. units

Similar questions