Math, asked by apjurlahcatemiroy, 9 months ago

find the area of a triangular lot with side length 50 meters, 65 meters, and 81 meters (complete solution).

Answers

Answered by BrainlyRaaz
15

Given :

  • Sides of the triangular plot = 50 m, 65 m and 81 m.

To find :

  • Area of the triangular plot = ?

Step-by-step explanation :

Now, the formula to find the semi-perimeter of a triangle is :-

 \bigstar {\boxed {\bf S = \dfrac{ a+ b+ c}{2}}}

Substituting value in above formula, we get

 \begin{lgathered} \tt S = \dfrac{ 50 + 65 + 81 }{2}\\ \\ \tt =\dfrac{196}{2}\\ \\ \tt= 196 \div 2\\ \\ \tt= 98 \: m\end{lgathered}

Now, by Heron's formula find the area of the triangular plot :

 \bigstar{\boxed{\bf Area \:of \triangle = {\sqrt{s(s-a) (s-b) (s-c)}}}}

Substituting value in the above formula, we get,

 {\tt = {\sqrt{98(98-50) (98-65) (98-81)}}} \\ \\ \tt = {\sqrt{98\times 48 \times 33 \times 17}} \\ \\ \tt = {\sqrt{2\times7\times7\times2\times2\times2\times2\times3\times3\times11\times17}} \\ \\ \tt = 2 \times 7 \times 2 \times 3{\sqrt{11\times17\times2}} \\ \\ \tt = 84{\sqrt{374}}

Thus, The Area of the triangular plot \tt = 84{\sqrt{374\:m^2}}

Answered by ItzMysticalBoy
14

\huge {\red{\mathfrak {Question :-}}}

  • Find the area of a triangular plot with side length 50 meters, 65 meters, and 81 meters.

\huge {\pink{\mathfrak {Solution :-}}}

\underline{\bold {Given:}}

  • Sides of the triangular plot = 50 meters , 65 meters and 81 meters.

\underline{\bold {To find :}}

  • The area of the triangular plot.

We have to find area so we first find semi-perimeter :

\boxed {\blue{S = \dfrac{ a+ b+ c}{2}}}

Let

  • a=50 meters
  • b=65 meters
  • c=81 meters.

 \begin{lgathered}\begin{lgathered} \implies S = (\dfrac{ 50 + 65 + 81 }{2})\:meters\\ \\  \implies S=(\dfrac{196}{2}) \: meters\\ \\ \implies S= 98 \: meters \end{lgathered}\end{lgathered}

By Heron's formula we find the area of the triangular plot :

\boxed{\blue{Area \:of \:triangle = {\sqrt{s(s-a) (s-b) (s-c)}}}}

\begin{lgathered}{={\sqrt{98(98-50) (98-65) (98-81)}}} \: meters \\ \\ = {\sqrt{98\times 48 \times 33 \times 17}}  \: meters\\ \\={\sqrt{2\times7\times7\times2\times2\times2\times2\times3\times3\times11\times17}}  \: meters\\ \\  =2 \times 2\times 7\times 3{\sqrt{2\times11\times 17}} \: meters \\ \\ = 84{\sqrt{374}} \: meters\end{lgathered}

\green {\therefore {The\:area\: of \:the\:triangular\: plot\:is\:84{\sqrt{374}\:meters.}}}

\rule {307}{2}

Similar questions