Math, asked by roopashekarmalali, 1 month ago

find the area of a triangular park whose sides are 30 cm 25 cm and 15 .



by using herons formula​

Answers

Answered by noshithac
59

Answer:

this is the correct answer

Step-by-step explanation:

hope it helps

Attachments:
Answered by sethrollins13
90

Given :

  • Sides of Triangle are 30 cm , 25 cm and 15 cm .

To Find :

  • Area of Triangle By Heron's Formula .

Solution :

For Semi Perimeter :

\longmapsto\tt{s=\dfrac{30+25+15}{2}}

\longmapsto\tt{s=\dfrac{70}{2}}

\longmapsto\tt{s=\cancel\dfrac{70}{2}}

\longmapsto\tt\bf{s=35\:cm}

By Heron's Formula :

Here :

  • a = 30 cm
  • b = 25 cm
  • c = 15 cm

\longmapsto\tt\bf{Area=\sqrt{s(s-a)\:(s-b)\:(s-c)}}

\longmapsto\tt{\sqrt{35(35-30)\:(35-25)\:(35-15)}}

\longmapsto\tt{\sqrt{35(5)\:(10)\:(20)}}

\longmapsto\tt{5\times{7}\times{5}\times{5}\times{2}\times{5}\times{2}\times{2}}

\longmapsto\tt{5\times{5}\times{2}\sqrt{7\times{2}}}

\longmapsto\tt\bf{50\sqrt{14}\:{cm}^{2}}

So , The Area of Triangle is 5014 cm² .

Similar questions