Math, asked by nagma31, 4 months ago

Find the area of ∆ ABC with vertices A(5,3), B(4,5) and C(3,1).​

Answers

Answered by aryan073
8

Given:

Find the area of triangle ABC with vertices A(5,3) ,B(4,5) and C(3,1) .

To find :

➡ The area of triangle =?

Formula :

\red\bigstar\sf{ Area \: of \: \triangle \: ABC =\dfrac{1}{2} \times A=\left[\begin{array}{ccc}x_{1}&y_{1}&z_{1}\\x_{2}&y_{2}&z_{2}\\x_{3}&y_{3}&z_{3}\end{array}\right]}\\

\\ \implies\large\sf{Area \: of \: triangle =\dfrac{x_{1}(y_{2} -y_{3})+x_{2} (y_{3} - y_{1}) +x_{3}( y_{1} -y_{2})}{2}}

Solution:

  • (x1,y1)=(5=3)
  • \\ \sf {(x_{2} , y_{2} )=(4,5)}
  • \\ \sf {(x_{3} , y_{3} ) =(3,1)}

Substitute the vertices values in this formula :

\\ \implies\large\sf{\: Area \: of \: triangle =\dfrac{x_{1} (y_{2} -y_{3})+x_{2}(y_{3} -y_{1})+x_{3}(y_{1} -y{2})}{2}}

\\ \implies\large\sf{Area \: of \: triangle=\dfrac{5(5-1)+4(1-3)+3(3-5)}{2}}

\\ \implies\large\sf{ Area \: of \: triangle =\dfrac{5(4)+4(-2)+3(-2)}{2}}

\\ \implies\large\sf{Area \: of \: triangle =\dfrac{20-8-6}{2}}

\\ \implies\large\sf{Area \: of \: triangle =\dfrac{20-15}{2}}

\\ \implies\large\sf{ Area \: of \: triangle ABC =\dfrac{5}{2}}

\\ \implies\large\sf{ Area \: of \: triangle ABC =2.5 sq.units}

\red\bigstar\boxed{\large\sf{Area \: of \: \triangle \: ABC =2.5sq.units}}

____________________________

Additional Information :

\\ \large\sf{(1) \: Area \: of \: triangle =\dfrac{b \times h}{2}}

\\ \large\sf{(2) \: Area \: of \: parallelogram =B \times h}

\\ \large\sf{(3) \: Area \: of \: rectangle = L \times w}

\\ \large\sf{(4) \: Area \: of \: square =L^2}

\\ \large\sf{(5) \: Area \: of \: circle =\pi r^2}

Answered by abhi3023
2

Bhaiya nhi Saiyan aur agr bura lage to lgna v chaiye.

Similar questions