Math, asked by priya2016, 1 year ago

Find the area of an equilateral triangle PQRwhose each side is units


MdSaalikFaizan: Units ??

Answers

Answered by vbscripts
0

 \text{Let the side of the equilateral triangle  =  a} \\  \:  \:  \:  \:  \:  \:  \:  s =  \frac{1}{2} (a + a + a) =  \frac{3}{2} a \\ \text{Area} =  \sqrt{s(s - a)(s - b)(s - c)}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{ \frac{3}{2} a( \frac{3}{2} a - a)( \frac{3}{2} a - a)( \frac{3}{2} a - a)} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =   \sqrt{ \frac{3}{2}a(  \frac{a}{2} )(  \frac{a}{2} )(  \frac{a}{2} )} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sqrt{ \frac{3 \times  {a}^{2}  \times {{a}^{2}}}{ {2}^{2}  \times  {2}^{2} } }   =  \frac{a \times a}{2 \times 2}  \sqrt{3}  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \frac{ {a}^{2} }{4} \sqrt{3}   =  \frac{ \sqrt{3} }{4}  {a }^{2}  \\ \text{Thus, area of an equilateral triangle}  =  \frac{ \sqrt{3} }{4}  \text{side} {}^{2}
HOPE IT HELPS!
PLS MARK AS BRAINLIEST
Similar questions