Math, asked by arti5378, 10 months ago

find the area of an equilateral triangle whose each side is 12 CM also find the height of triangle​

Answers

Answered by SnowySecret72
21

Answer:

Area of triangle=36√3 cm^2

and height=6√3 cm

Given:

An equilateral triangle whose each side is 12 cm

To find:-

Area of equilateral triangle and it's height

Solution:-

sides=12 cm

We know that

area of equilateral triangle

 =   \frac{ \sqrt{3} }{4}  {a}^{2}

 =  \frac{ \sqrt{3} }{4} \times ( {12)}^{2}

 =  \frac{ \sqrt{3} }{4}  \times 144

 =  \sqrt{3}  \times 36

 = 36 \sqrt{3}   \:  {cm}^{2}

Now;

area \: of \: triangle =  \frac{1}{2} \times b \times h

 = 36 \sqrt{3} =  \frac{1}{2} \times 12 \times h

 = 36 \sqrt{3} = 6h

h =  \frac{36 \sqrt{3} }{6}

h = 6 \sqrt{3}   \:  cm

----------------------------

area \: of \: triangle = 36 \sqrt{3} \:   {cm}^{2} and \: height = 6 \sqrt{3}  \: cm

Answered by ButterFliee
4

\huge{\underline{\underline{\mathrm{\red{GIVEN:-}}}}}

  • Side of an equilateral triangle is 12 cm

\huge{\underline{\underline{\mathrm{\red{TO\:FIND:-}}}}}

Find the Area of an equilateral triangle and the height of the triangle = ?

\huge{\underline{\underline{\mathrm{\red{FORMULA  \:USED:-}}}}}

\large{\boxed{\rm{\red{Area\:of\:Equilateral \:Triangle = \frac{\sqrt{3}}{4} \times {a}^{2}}}}}

\large{\boxed{\rm{\red{Area \:of\:Triangle = \frac{1}{2} \times b \times h}}}}

\huge{\underline{\underline{\mathrm{\red{SOLUTION:-}}}}}

【We have given that, the sides of an equilateral triangle are 12 cm】

On putting the given values in the formula, we get

\mathbf{Area = \frac{\sqrt{3}}{4} \times {(12)}^{2}}

\mathbf{Area = \frac{\sqrt{3}}{\cancel{4}} \times \cancel{144}}

\mathbf{Area = \sqrt{3} \times 36}

\large\mathbf\red{Area = 36\sqrt{3}\: {cm}^{2}}

Thus, the area of an equilateral triangle is 363 cm²

⚫Now, we have to find the height of an equilateral triangle

On putting the given values in the formula, we get

\large\mathbf{Area \:of\:Triangle = \frac{1}{2} \times b\times h}

\mathbf{36\sqrt{3} = \frac{1}{\cancel{2}} \times \cancel{12}\times h}

\mathbf{36\sqrt{3} = 6 h}

\mathbf{h = \large\frac{\cancel{36}\sqrt{3}}{ \cancel{6 }}}

\large\mathbf\red{h = 6\sqrt{3}\: cm}

Thus, the height of an equilateral triangle is 63 cm

Similar questions