Math, asked by AestehticLoVE, 2 days ago

Find the area of an equilateral triangle whose perimeter is 18cm. Also find the hight. give me this answer fastly I really need this​

Answers

Answered by kinghacker
3

Step-by-step explanation:

perimeter of equilateral triangle = 3a

  • 18cm = 3a
  • a = 6cm

the area of an equilateral triangle =

  •  \frac{ \sqrt{3} }{4}  {a}^{2}
  •  \frac{ \sqrt{3} }{4}  \times  {6}^{2}
  •  \frac{ \sqrt{3} }{4}  \times 36
  • area \:  = 9 \sqrt{3} cm^2

height of equilateral triangle=

  •  \frac{ \sqrt{3} }{2}  \times a
  •  \frac{ \sqrt{3} }{2}  \times 6
  • height =  3 \sqrt{3} cm
Answered by AnanyaBaalveer
3

Answer:

\large\boxed{\sf{area = 9 \sqrt{3} }}

\large\boxed{\sf{height = 3 \sqrt{3} }}

Step-by-step explanation:

According to the information given in the question is

Perimeter=18cm

We need to find the area and height of the equilateral triangle.

Before we start let's learn what is equilateral triangle.

A equilateral triangle is a type of triangle in which all the sides and angles are .

Before finding area we have to find it's side

Perimeter=3×side

\large\boxed{\sf{18cm= 3 \times side}}

\large\boxed{\sf{ \implies  \frac{18cm}{3}  = side}}

\large\boxed{\bf{6cm = side}}

Area of equilateral triangle

\large\boxed{\sf{ \implies  \frac{ \sqrt{3} }{4} {s}^{2}  }}

On substituting values we get,

\large\boxed{\sf{ \frac{ \sqrt{3} }{4} \times  {(6cm)}^{2}  }}

\large\boxed{\sf{ \frac{ \sqrt{3} }{4}  \times 36cm^{2} }}

\large\boxed{\sf{ \sqrt{3}  \times  {9cm}^{2} }}

\large\underline{\bf{9 \sqrt{3}  {cm}^{2} }}

Now, height of equilateral triangle

\large\boxed{\sf{ \frac{ \sqrt{3} }{2} s}}

\large \boxed{\sf{ \frac{ \sqrt{3} }{2} \times 6cm }}

\large\boxed{\sf{ \sqrt{3} \times 3cm }}

\large\boxed{\bf{3 \sqrt{3}cm }}

Similar questions