Math, asked by brianydon, 1 year ago

Find the area of an equilateral triangle whose perimeter is 12cm

Answers

Answered by Anonymous
7
Hey mate ☺

Given, Perimeter of equilateral∆ = 12cm

We know that all sides of the equilateral ∆ are equal...

So, let side of the ∆ = x

Now, A.T.Q.

Perimeter = 12cm

x+x+x = 12cm

3x =12

x = \frac{12}{3} = 4cm

Side of eq. ∆ = 4cm

Area of eq. ∆ =

 \frac{ \sqrt{3} }{4} {side}^{2}

 = \frac{ \sqrt{3} }{4} \times {4}^{2} \\ = \frac{ \sqrt{3} }{4} \times 16 \\ = \sqrt{3} \times 4 \\ = 4 \sqrt{3} \: {cm}^{2}

Putting the value of √3 =1.73

Area = 4 ×1.73

 = 6.92 \: {cm}^{2}



• Hope it helps you ☺✌✌
Answered by MdSaalikFaizan
2

Hope the answer is helpful !!

Good Day !!

Attachments:
Similar questions