Math, asked by con, 1 year ago

find the area of an equilateral triangle whose side is 4 cm

Answers

Answered by dheerajk1912
1

The area of an equilateral triangle is \mathbf{4\sqrt{3} \ cm^{2}}

Step-by-step explanation:

  • Given data

        Side of equilateral triangle (a) = 4 cm

  • We know formula of equilateral triangle is given below

        \mathbf{\textrm{Area of equilateral triangle }=\frac{\sqrt{3}}{4}\times Side^{2}}

  • \mathbf{\textrm{Area of equilateral triangle }=\frac{\sqrt{3}}{4}\times a^{2}}
  • \mathbf{\textrm{Area of equilateral triangle }=\frac{\sqrt{3}}{4}\times 4^{2}}

        On cancel out 4 in numerator and denominator, we get

  • \mathbf{\textrm{Area of equilateral triangle }=4\sqrt{3} \ cm^{2}} This is the area of equilateral triangle.

Answered by Anonymous
3

\huge{\underline{\underline{\bf{Solution}}}}

\rule{200}{2}

\tt Given\begin{cases} \sf{Side \: of \: equilateral \: triangle = 4 \: cm} \end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find the area of the equilateral triangle.

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

We know the formula to find the area of the equilateral triangle when side is given

\Large{\star{\boxed{\sf{Area = \frac{\sqrt{3}}{4} \times a^2}}}}

_______________[Put Values]

\sf{→Area = \frac{\sqrt{3}}{4} \times (4)^2} \\ \\ \sf{→Area = \frac{\sqrt{3}}{\cancel{4}} \times \cancel{16}} \\ \\ \sf{→Area = \sqrt{3} \times 4} \\ \\ \sf{→ Area = 4\sqrt{3} \: cm^2}

\Large{\star{\boxed{\sf{Area = 4\sqrt{3} \: cm^2}}}}

Similar questions