Math, asked by Rojideve231, 1 year ago

Find the area of an equilateral triangle whose sides are of 14 cm each using Heron's Formula


TANU81: pleade check it is right or wrong ...If wrong I will edit...fast

Answers

Answered by TANU81
15
Hi friend...


The sides are of 14 cm;-

Semi perimeter-- a+b+c
______

2


= 14+14+ 14/2

=42/2

=21

_________________
√ 21[21-14) (21-14) (21-14)

=21×7×7×7 (do prime factorisation)

=3×7×7×7×7(make pair of two)

=3×7×7

=147 answer....


Thanks...♌

Hope it is helpful ✨✨✨







Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=84.87\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Sides \: of \: triangle = 14 cm,14 cm,14 cm} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\   : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{14+ 14+ 14}{2}  \\  \\  : \implies s =  \frac{42}{2}  \\  \\  \green{ : \implies s = 21} \\  \\   \circ\:  \bold{Area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{21(21- 14)(21-14)(21- 14)}  \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{21 \times 7\times 7\times 7}   \\  \\  :  \implies \text{Area \: of \: triangle =} \sqrt{7203}   \\  \\  :  \implies \text{Area \: of \: triangle =}84.87 \: cm^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle = 84.87 {cm}}^{2} }

Similar questions