Math, asked by gursajansidhu51, 6 months ago

find the area of an equilateral triangle with side 2√3 cm for class 9

Answers

Answered by prince5132
22

GIVEN :-

  • Side of an equilateral ∆ = 2√3 cm.

TO FIND :-

  • The area of an equilateral ∆.

SOLUTION :-

As we know that the area of ∆ id given by,

 \\   : \implies \:  \displaystyle \sf \: Area _{( \triangle)} =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\

  • a = 2√3 cm.
  • b = 2√3 cm.
  • c = 2√3 cm.
  • s = ( a + b + c )/2 = (2√3 + 2√3 + 2√3)/2 = 3√3.

 \\  \\  : \implies \:  \displaystyle \sf \: Area _{( \triangle)} =   \sqrt{3 \sqrt{3} \bigg(3 \sqrt{3}  - 2 \sqrt{3}\bigg)\bigg(3 \sqrt{3}  - 2 \sqrt{3} \bigg)\bigg(3 \sqrt{3}   - 2 \sqrt{3}  \bigg)}  \\  \\  \\

 : \implies \:  \displaystyle \sf \: Area _{( \triangle)} =   \sqrt{3 \sqrt{3}  \times  \sqrt{3} \times  \sqrt{3}   \times  \sqrt{3} }  \\  \\  \\

 : \implies \:  \displaystyle \sf \: Area _{( \triangle)} =  \sqrt{3 \sqrt{9}  \times  \sqrt{9} }  \\  \\  \\

 : \implies \:  \displaystyle \sf \: Area _{( \triangle)} =  \sqrt{3 \times 3 \times 3}  \\  \\  \\

 : \implies \:  \displaystyle \sf \: Area _{( \triangle)} =  \sqrt{27}  \\  \\  \\

 : \implies \:  \displaystyle \sf \: Area _{( \triangle)} =  \sqrt{9 \times 3}  \\  \\  \\

 : \implies \:  \underline{ \boxed{ \displaystyle \sf \: Area _{( \triangle)} = 3 \sqrt{3} }}

Answered by anshika3834
4
Hope this helps.......
Attachments:
Similar questions