Math, asked by 0burhanuddin0, 7 months ago

Find the area of an isosceles triangle each of whose equal sides measures 12 cm and whose base is 18 cm.​

Answers

Answered by Uriyella
5
  • The area of an isosceles triangle = 27√7 cm².

Given :

The sides of an isosceles triangle are :

The equal sides of an isosceles triangle is 12 cm.

  • The first angle = 12 cm.
  • The second side = 12 cm.
  • The third side = 18 cm.

To Find :

  • The area of an isosceles triangle.

Solution :

By heron's formula,

 \blue{ \huge{ \star}} \:  \:  \:  \large \boxed{  \tt\pink{ \sqrt{s(s - a)(s - b)(s - c)} }}

Where,

  • s = semi perimeter.
  • a = the first side.
  • b = the second side.
  • c = the third side.

We know that,

Semi perimeter = half of the perimeter.

Semi perimeter =  \sf \dfrac{Perimeter}{2}

We know that,

Perimeter of the triangle = a + b + c

That means,

Semi perimeter =  \sf \dfrac{a + b + c}{2}

We have,

  • a = 12 cm.
  • b = 12 cm.
  • c = 18 cm.

 :  \implies \rm  s =  \dfrac{12 + 12 + 18}{2} \:  \: cm \\  \\ :  \implies \rm s =  \dfrac{42}{2}  \:  \: cm \\  \\ :  \implies \rm s = 21 \:  \: cm \\  \\  \:  \:  \rm \therefore \:  \: s = 21 \: cm

Now, substitute all the values (values of s, a, b and c) in the heron's formula.

:  \implies \rm  \sqrt{21 \: cm(21 \: cm - 12 \: cm)(21 \: cm - 12 \: cm)(21 \: cm - 18 \: cm)}  \\  \\ :  \implies \rm  \sqrt{21 \: cm(9 \: cm)(9 \: cm)(3 \: cm)}  \\  \\ :  \implies \rm  \sqrt{(3 \times 7)(3 \times 3)(3 \times 3)(3) \:  {cm}^{4} }  \\  \\ :  \implies \rm  \sqrt{3 \times 7 \times 3 \times 3 \times 3 \times 3 \times 3 \:  {cm}^{4} }  \\  \\ :  \implies \rm  \sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 7 \:  {cm}^{4} }  \\  \\ :  \implies \rm  \sqrt{ {(3)}^{2} \times  {(3)}^{2}  \times  {(3)}^{2}  \times 7 \:  {cm}^{4}  }  \\  \\ :  \implies \rm 3 \times 3 \times 3 \sqrt{7}  \:  {cm}^{2}  \\  \\ :  \implies \rm 9 \times 3 \sqrt{7}   \: {cm}^{2}  \\  \\ :  \implies \rm 27 \sqrt{7}  \:  {cm}^{2}

Hence,

The area of an isosceles triangle is 27√7 cm².

Similar questions