Math, asked by Anonymous, 1 month ago

find the area of an isosceles triangle whose base is 24 cm and one of its equal side is 13​

Answers

Answered by vaibhav526292
0

Answer:

you can use heron's theorum

√s(s-1st side)(s-2nd side)(s-3rd side)

s=perimeter/2

Answered by Anonymous
7

Given:

  • Find the area of an isosceles triangle whose base is 24 cm and one of its equal side is 13

Diagram:

  • Refer to the attachment please!

Solution:

Let ABC be the isosceles triangle where,

  • AB = AC = 13 cm

We draw AD ⊥ BC.

∴⠀⠀⠀⠀⠀⠀⠀⠀BD = DC = 12 cm

In right angled △ABD, by Pythagoras theorem,

We have ⠀⠀⠀⠀⠀⠀AB² = AD² + BD²

 \implies \:  \:  \:  \:  \:  \:  \sf \: {13}^{2}  = AD  {}^{2} + 12 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AD  {}^{2} = 13  {}^{2}  -  12  {}^{2} \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: AD {}^{2}  = 169  {}^{} - 144  {}^{} \\  \sf \:  \:  \:  \:  \: AD {}^{2}  = 25 {}^{2}  \\  \sf \:  \:  \: AD² = 5  {}^{2} \\  \sf \:  \:  \:  \:  \:  \:  \:  \:AD = 5  \: cm \\  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \: Area \:  of  \: △ABC  \:  =  \frac{1}{2} \:  base \times altitude \\ \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =   \frac{1}{2}  \times BC \times  AC \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    =   \frac{1}{2}  \times24 \times 5 \: sq.cm \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  =   {  \boxed{ \underline{ \bigstar{ \pink{ \bf{60 \: sq.cm}}}}}} \\  \\

⠀⠀⠀⠀⠀⠀⠀⠀Hence Solved!!

⠀⠀⠀⠀⠀⠀⠀Hope it helps you!!

________________________________________

Attachments:
Similar questions