Math, asked by ishasrivastava564, 4 months ago

find the area of an isosceles triangle whose equal sides are 10cm each and base is 12cm​

Answers

Answered by ayeshakhax
5

Step-by-step explanation:

hope it will be helpful to you

Attachments:
Answered by Anonymous
4

To find the area of an isosceles triangle,

We use Heron's formula,

 \sf \: let \: the \: sides \: be \:  a , \: b  \: \: and \: c.

 \sf \: a \:  = 10 \: cm \\  \sf \: b \:  =  \: 10  \: cm \\ \sf c \:  =  \: 12 \: cm

 \sf \: semiperimeter(s) \:  =  \frac{a + b + c}{2}  \\  \\  \sf \implies \:  \frac{10 + 10 + 12}{2}  \\  \\  \sf \implies \:  \frac{32}{2}  \\  \\  \sf \implies \: 16 \: cm

 \sf \: Area =  \sqrt{s (s-a)(s-b)(s-c) } \\  \\  \sf \:  =  \:  \sqrt{16(16 - 10)(16 - 10)(16 - 12)}  \\  \\  \sf \:  =  \sqrt{16 \times 6 \times 6 \times 4}  \\  \\  \sf \:  =  \:  \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 3 \times 2 \times 2}  \\  \\  \sf \:   =  \: \sqrt{ {2}^{2}  \times  {2}^{2}  \times  {2}^{2}  \times  {3}^{2}  \times  {2}^{2} }  \\  \\  \sf \:  =  \: 2 \times 2 \times 2 \times 3 \times 2 \\  \\  \sf  =  \: 48 \:  {cm}^{2}  \:  \:  \: ...(ans)

Similar questions