Math, asked by pintay, 1 year ago

find the area of an isosceles triangle whose equal sides are of length 15cm each and third side is 12cm.​

Answers

Answered by jugal07
18

hii mate

using herons formula,

 \sqrt{s(s - a)(s - b)(s - c)}

s = 21

s-a = 6 = s-b

s-c = 9

area=

 \sqrt{21 \times 6 \times 6 \times 9}

 \sqrt{3 \times 7 \times 3 \times 3 \times 2 \times 6 \times 6}

6 \times 3 \sqrt{21}

18 \sqrt{21}

18 \times 4.55

=82.48

Answered by LovelyG
73

Answer:

\large{\underline{\boxed{\sf 18 \sqrt{21}}}}

Step-by-step explanation:

Given that, the sides of isosceles triangle are 15 cm, 15 cm, and 12 cm.

  • a = 15
  • b = 15
  • c = 12

Using heron's formula -

S = \rm \dfrac{a + b + c}{2}

S = \rm \dfrac{15 + 15 + 12}{2}

S = \rm \dfrac{42}{2}

S = 21

Now,

\rm Area = \sqrt{s(s-a)(s-b)(s-c)}

\rm Area =  \sqrt{21(21 - 15)(21 - 15)(21 - 12)}  \\  \\ \rm Area =  \sqrt{21 \times 6 \times 6 \times 9} \\\\ \rm Area = \sqrt{7 \times 3 \times 2 \times 3 \times 2 \times 3 \times 3 \times 3}\\  \\ \rm Area = 18 \sqrt{21}  \: cm^{2}

Hence, the area of isosceles triangle is 18√21 cm².

Similar questions