Math, asked by kamleshrajai13, 9 months ago

find the area of an isosceles triangle whose perimeter is 32 cm and base is 12cm​

Answers

Answered by Truebrainlian9899
39

Given :

 \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \looparrowright Base = 12cm

 \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \looparrowright Isosceles triangle

 \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \looparrowright perimeter = 32cm

 \:  \:  \:  \:  \:  \:  \:

To Find :

 \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \looparrowright Area of triangle

 \:  \:  \:  \:  \:  \:  \:

☛ Suppose the triangle as right angled triangle.

 \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  ✞︎ Formula used -

 \:  \:  \:  \:  \:  \:  \:

  \bigstar \: \boxed{ \boxed{ \rm \:perimeter = 1s + 2s + 3s}}

 \:  \:  \:  \:  \:  \:  \:

Solution :

 \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \looparrowright let 2s and 3s be = x

 \:  \:  \:  \:  \:  \:  \:

\implies 32cm = 12cm + x + x

 \:  \:  \:  \:  \:  \:  \:

\implies 32cm = 12cm + 2x

 \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  On Transposing the terms :

 \:  \:  \:  \:  \:  \:  \:

 \implies \rm \: 32 - 12 = 2x

 \:  \:  \:  \:  \:  \:  \:

 \implies \rm \: 20 = 2x

 \:  \:  \:  \:  \:  \:  \:

 \implies \rm \:  \dfrac{20}{2}  = x

 \:  \:  \:  \:  \:  \:  \:

 \boxed{ \therefore \rm \: x = 10cm}

 \:  \:  \:  \:  \:  \:  \:

☕︎ 2 side = 10cm

 \:  \:  \:  \:  \:  \:  \:

☕︎ 3 side = 10cm

 \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  ✞︎ Formula used -

 \:  \:  \:  \:  \:  \:  \:

  \bigstar \: \boxed{ \boxed{ \rm \:area =  \frac{1}{2} \times base \times height }}

 \:  \:  \:  \:  \:  \:  \:

 \implies \rm \: area =   \dfrac{1}{2}  \times 12 \times 10

 \:  \:  \:  \:  \:  \:  \:

 \implies \rm \: area \:  = 6 \times 10

 \:  \:  \:  \:  \:  \:  \:

   ༒︎\: \boxed{ \boxed{ \rm \:area =  60m {}^{2} }}

 \:  \:  \:  \:  \:  \:  \:

More Explanations :

 \:  \:  \:  \:  \:  \:  \:

➪ Find other sides with the perimeter given

 \:  \:  \:  \:  \:  \:  \:

➪ As it is an isosceles triangle , that's why sides are same .

 \:  \:  \:  \:  \:  \:  \:

➪ Base was given and height was found

 \:  \:  \:  \:  \:  \:  \:

➪ Using the formula , find the area.

Attachments:
Similar questions