Math, asked by kashishvalecha5588, 7 months ago

find the area of an isosceles triangle whose perimeter is 60 cm and each of the equal side is 24 cm​

Answers

Answered by Anonymous
16

\large{\boxed{\bf{AnswEr}}}

• Area of the isosceles triangle is 36√15 cm.

Given :-

• Perimeter of an isosceles triangle is 60cm.

• Each of the equal sides is 24cm.

To Find :-

• Area of the isosceles triangle.

__________________________

\large{\boxed{\bf{Solution}}}

Here,

• Equal sides, S = 24

• Perimeter = 60cm

• Base = ?

★ We know that the Perimeter of an isosceles triangle is :-

Perimeter = 2s + b

➪ 2 (24) + b = 60

➪ 48 + b = 60

➪ b = 60 - 48

➪ b = 12cm

__________________________

Here,

• Hypotenuse = 24

• Base = 6 [ when an altitude is drawn, it bisects the base ]

Height = √{ (24)² - (6)² } ➪ √ 576 - 36 ➪ 615

Now, we'll find the area of the isosceles triangle :-

Area = base × height /2

➪ 12 × 6√15 /2

➪ 6 × 6√15

3615 cm

Hence, the area of the isosceles triangle is 3615cm.

__________________________

Answered by Anonymous
19

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow taking\:isosceles\:triangle\:as\: \triangle ABC

\sf\dashrightarrow perimeter\:of\: isosceles\:triangle\:= 60cm

\sf\dashrightarrow side\:of\:triangle\:(a)=24cm

\sf\dashrightarrow let\:the\:third\:side(base)\:be\:x\:cm

\red{\text{ NOTE:- ISOSCELES TRIANGLE CONTAINS, TWO EQUAL SIDES AND ONE UNEQUAL.}}

\large\underline\bold{TO\:FIND,}

\sf\large\dashrightarrow area\:of\: isosceles\:triangle

TAKING TWO CASES,

\sf\therefore in\:case\:one,\:we\:will\:find\:the\:base\:of\:an\:issosceles\:triangle.

\sf\therefore in\:case\:two,\:we\:will\:find\:the\:area\:of\:an\:issosceles\:triangle.

✯FORMULA IN USE,

✯FOR CASE:-1,

\bf{\boxed{\bf{ \star\:\: PERIMETER\:OF\: TRIANGLE [ISOSCELES]= SUM\:OF\:ALL\:SIDES\:\: \star}}}

✯FOR CASE :-2

\large{\boxed{\bf{ \star\:\: AREA\:OF\:TRIANGLE= \dfrac{1}{2} \times base\times \:height\:\: \star}}}

\large\underline\bold{SOLUTION,}

\large{\boxed{\bf{CASE:-1 }}}

\sf\therefore PERIMETER\:OF\: TRIANGLE [ISOSCELES]= SUM\:OF\:ALL\:SIDES

\sf\implies 60= 24+24+x

\sf\implies 60=48+x

\sf\implies 60-48= x

\sf\implies 12= x

\large{\boxed{\bf{ \star\:\: base (x)=12cm\:\: \star}}}

\sf\therefore  note:-FOR\:FINDING\:AREA\:OF\:TRIANGLE\:WE\: DON'T\:KNOW\:HEIGHT,

\sf\dashrightarrow HEIGHT\:CAN\:BE\:FOUND\:USING\: Pythagoras\:theorem.

\red{\text{DRAWING A LINE PERPENDICULAR TO BC }}

\sf\therefore TWO\:TRIANGLES\:FORMED(\triangle ABD \:and \triangle ADC.)

\sf\therefore TAKING \triangle ADC.

\sf\dashrightarrow AC= 24cm

\sf\dashrightarrow DC= \dfrac{BC}{2}= \dfrac{12}{2} = 6cm

\sf\large\therefore by\: Pythagoras\:theorem,

\sf\therefore AC^2= AD^2+DC^2

\sf\dashrightarrow (24)^2= (h)^2+ (6)^2

\sf\implies 576= h^2+36

\sf\implies h^2= 576-36

\sf\implies h= \sqrt{ 540}

\sf\implies h= 23.23 cm

\large{\boxed{\bf{ \star\:\:height(h)= 23.23cm \:\: \star}}}

\large{\boxed{\bf{ CASE:-2}}}

\sf\therefore AREA\:OF\:TRIANGLE= \dfrac{1}{2} \times base\times \:height

\sf\implies \dfrac{1}{2} \times 12 \times (23.23)

\sf\implies \dfrac{1}{\cancel{2}} \times \cancel{12} \times (23.23)

\sf\implies 6 \times (23.23)

\sf\implies 139.38cm^2

\large{\boxed{\bf{ \star\:\: area\:of\:isosceles\:triangle= 139.38cm^2\:\: \star}}}

\large\underline\bold{AREA\:OF\:ISOSCLES\:TRIANGLE\:IS\:139.38cm^2}

____________________

Attachments:
Similar questions