Math, asked by toshiftoshif767, 1 day ago

find the area of an isosceles triangle whose sides are 10 cm and base is 12cm​

Answers

Answered by Anonymous
73

Given :

  • Equal Sides = 10 cm
  • Base = 12 cm

 \\ \\

To Find :

  • Area of the Triangle = ?

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Triangle)}} = \sqrt{s \bigg( s - a \bigg) \bigg( s - b \bigg) \bigg( s - c \bigg) } }}}}} \\

Where :

  • s = Semi - Perimeter
  • a = Side 1
  • b = Side 2
  • c = Side 3

 \\ \\

 \dag Calculating the Semi - Perimeter :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { S = \dfrac{ a + b + c }{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { S = \dfrac{ 10 + 10 + 12 }{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { S = \dfrac{ 32 }{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { S = \cancel\dfrac{ 32 }{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\pmb{\sf{ Semi - Perimeter = 16 \; cm }}}}} \; {\red{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \dag Calculating the Area :

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = \sqrt{ \bigg( s - a \bigg) \bigg( s - b \bigg) \bigg( s - c \bigg) } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = \sqrt{ 16 \bigg( 16 - 10 \bigg) \bigg( 16 - 10 \bigg) \bigg( 16 - 12 \bigg) } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = \sqrt{ 16 \times 6 \times 6 \times 4 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = \sqrt{ \underline{4 \times 4} \times \underline{6 \times 6} \times 4 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = 4 \times 6 \times \sqrt{4}  } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = 24 \times \sqrt{4}  } \qquad \; \; \bigg\lgroup {\pink{\sf{ Value \; of \; \sqrt{4} = 2 }}} \bigg\rgroup \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = 24 \times 2  } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\pmb{\sf{ Area = 48 \; {cm}^{2} }}}}} \; {\purple{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Area of the Triangle is 48 cm² .

 \\ \qquad{\rule{200pt}{2pt}}

:)

Answered by MadEinstein25
56

 \small \dag \sf \blue{ \underline{ \red{question}}}

find the area of an isosceles triangle whose sides are 10 cm and base is 12cm.

 \small \dag \sf \blue{ \underline{ \red{Answer :-}}}

GIVEN :

  • EQUAL SIDES = 10 cm
  • BASE = 12 cm

\sf\purple{\underline{FORMULA}}

 \sqrt{s(s - a)(s - b)(s - c)}

\sf\purple{\underline{<strong>S</strong><strong>E</strong><strong>M</strong><strong>I</strong><strong> </strong>PERIMETER = A+B+C/2}}

⟶ 10+10+12/2

⟶ 32/2

⟶ 16

\underline{\rule{220pt}{3pt}}

\large\bigstar\mathtt{AREA}

(s - a) = 16 - 10 = 6

(s - b) = 16 - 10 = 6

(s - c) = 16 - 12 = 4

 \sqrt{16 \:  \times 6 \times 6 \times 4} \\  2\sqrt{4 \times 4 \times 6 \times 6}   \\ 2 \times 4 \times  6  \\8 \times 6 \\ 48

\sf\mathfrak \purple{\underline{Final\:Answer:-}}

Area of the Triangle = \fcolorbox{red}{blue}{ 48 cm }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Hope it helps you

Similar questions