Math, asked by royalrohitashsingh1, 3 months ago

Find the area of an octagon ABCDEFGH having each side equal
to 5 cm, HC = 11 cm and AP I HC such that AP = 4 cm.​

Attachments:

Answers

Answered by aviralkachhal007
8

Given :-

  • AB = BC = CD = DE = EF = FG = GH = AH = 5cm.
  • HC = 11cm
  • AP ⊥ HC
  • AP = 4cm

To Find :-

  • Area of Octagon ABCDEFGH

Construction :-

Draw a line XY prependicular from FE to GD

Solution :-

Let's discuss the figure into three part i.e., Figure 1, 2, 3.

Here,

  • ABCH is a parallelogram and it will be the first part of the figure.
  • GHCD is a Rectangle and it will be the second part of the figure.
  • GFED is a parallelogram Nd it will be the third part of the figure.

1.) Area of ABCH :-

AB = 5cm (given)

HC = 11cm (given)

AP = 4cm (given)

Area of ABCH :-

{\mathtt{\boxed{\red{Area\:of\:parallelogram\:=\: \frac{1}{2}(Sum\:of\: parallel\:sides)h}}}}

Substituting the value in the above formula,

\mapsto{\bold{Area\:ABCH\:=\: \frac{1}{2}(AB+HC)AP}}

\mapsto{\bold{Area\:ABCH\:=\: \frac{1}{2}(5+11)4}}

\mapsto{\bold{Area\:ABCH\:=\: \frac{1}{2}×14×4}}

\mapsto{\bold{Area\:ABCH\:=\: \frac{1}{\cancel{2}}×14×{\cancel{4}}}}

\mapsto{\bold{Area\:ABCH\:=\:14×2}}

\huge{\mathtt{\fcolorbox{green}{crimson}{Area\:ABCH\:=\:28cm²}}}

2.) Area of GHCD :-

GH = 5cm (given)

HC = 11cm (given)

Area of GHCD :-

{\mathtt{\boxed{\green{Area\:GHCD\:=\:(Length×Breadth)}}}}

Substituting the value in the above formula,

\mapsto{\bold{Area\:GHCD\:=\:(GH×HC)}}

\mapsto{\bold{Area\:GHCD\:=\:(5×11)}}

\huge{\mathtt{\fcolorbox{orange}{purple}{Area\:GHCD\:=\:55cm²}}}

3.) Area of GFED :-

GD = 11cm (∵ GHCD is a Rectangle, HC = GD = 11cm)

FE = 5cm (given)

XY = 4cm (Construction)

Area of GFED :-

{\mathtt{\boxed{\red{Area\:of\:parallelogram\:=\: \frac{1}{2}(Sum\:of\: parallel\:sides)h}}}}

Substituting the value in the above formula,

\mapsto{\bold{Area\:GFED\:=\: \frac{1}{2}(GD+FE)XY}}

\mapsto{\bold{Area\:GFED\:=\: \frac{1}{2}(5+11)4}}

\mapsto{\bold{Area\:GFED\:=\: \frac{1}{2}×14×4}}

\mapsto{\bold{Area\:GFED\:=\: \frac{1}{\cancel{2}}×14×{\cancel{4}}}}

\mapsto{\bold{Area\:GFED\:=\:14×2}}

\huge{\mathtt{\fcolorbox{pink}{darkblue}{Area\:GFED\:=\:28cm²}}}

Now,

Area of Octagon ABCDEFGH = Area ABCH + Area GHCD + Area GFED

=> 28cm² + 55cm² + 28cm²

\large{\mathtt{\fcolorbox{lime}{black}{Area\:of\:Octagon\:ABCDEFGH\:=\:111cm²}}}

Attachments:
Answered by Sakisalat
1

This is the Correct Answer...

Attachments:
Similar questions