Find the area of cross section, the lateral surface area, total surface area and the volume
Answers
Hello Aryanstha372 !
Answer:
Assuming that the base of the Right Prism is an Equilateral Triangle,
Area of the Base = 25√3 cm²
Lateral Surface Area = 450 cm²
Total Surface Area = 50(9 + √3) cm²
Volume = 375√3 cm³
Step-by-step explanation:
Formulae :
LSA of a Right Prism = (Perimeter of the Base) × Height
TSA of a Right Prism = LSA + 2(Area of the Base)
Volume of a Right Prism = (Area of the Base) × Height
Given :
Assuming that the base of the Right Prism is equilateral,
a = 10 cm
Altitude of the triangular base = 8 cm
h = 15 cm
Procedure :
Assuming that the base is an equilateral triangle,
Area of the Base = units²
[Area of an equilateral triangle]
⇒ Area of the Base =
⇒ Area =
⇒ Area = 25√3 cm².
LSA = p × h units²
⇒ LSA = (10 + 10 + 10) × 15
⇒ LSA = 30 × 15 cm²
∴ LSA = 450 cm².
TSA = LSA + 2A
⇒ TSA = 450 cm² + 2(25√3 cm²)
⇒ TSA = 450 cm² + 50√3 cm²
⇒ TSA = 50(9 + √3) cm².
Volume = A × h
⇒ V = 25√3 cm² × 15 cm
⇒ V = 25 × 15 × √3 cm³
∴ Volume = 375√3 cm³.
Thanks !