Math, asked by ahana1913, 3 months ago

Find the area of curved surface and total surface are of right circular cylinder whose height and radius of the base are 20 cm and 14 cm respectively.​

Answers

Answered by Aryan0123
18

Answer:

CSA = 1760 cm²

TSA = 2992 cm²

Given :-

  • Height = 20 cm
  • Radius = 14 cm

\\ \\

To find :-

  • Curved surface area (CSA) = ?
  • Total surface area (TSA) = ?

\\ \\

Solution :-

 \sf{CSA \: of \: cylinder =  2\pi \: r \: h } \\  \\

 \implies \sf{CSA = 2 \times  \dfrac{22}{7}  \times 14  \times 20} \\  \\

 \dashrightarrow  \:  \sf{CSA =  \dfrac{2 \times 22 \times \cancel {14} \times 20}{ \cancel7} } \\  \\

 \dashrightarrow \sf{CSA = 2 \times 22 \times 20 \times 2} \\  \\

 \:  \:  \therefore \:  \boxed{ \bf{CSA = 1760 \: cm {}^{2} }} \\  \\  \\

\\

Now for finding TSA,

\\

 \\   \sf{TSA = 2\pi \: r(r + h)} \\  \\

 \leadsto \sf{TSA = 2 \times  \dfrac{22}{7} \times 14 \times (14 + 20) } \\  \\

 \sf{ \longrightarrow \:  TSA = 2 \times 22 \times 2(34)} \\  \\

 \dashrightarrow  \: \sf{TSA = 2 \times 22 \times 68} \\  \\

  \therefore \boxed{ \bf{TSA = 2992 \: cm {}^{2} }}

Answered by BrainlyUnnati
5

QuestioN :

Find the area of curved surface and total surface are of right circular cylinder whose height and radius of the base are 20 cm and 14 cm respectively.​

GiveN :

Height = 20 cm

Radius = 14 cm

To FiNd :

The area of curved surface.

ANswer :

\sf The\: area \:of \:curved \:surface \:is \: 2992^2.

SolutioN :

\sf CSA=2Π\sf rh

\sf \rightarrow 2\:x\:\frac{22}{7} \:x\: 14\:x\:20

\sf \rightarrow 2\:x\:22\:x\:20\:x\:2

\sf \rightarrow 1760cm^2

\sf TSA=2Π\sf r(r+h)

\sf \rightarrow 2\:x\:\frac{22}{7} \:x\: 14( 14+20)

\sf \rightarrow 2\:x\:22\:x\:2\:x\:34

\sf \rightarrow 2992cm^2

∴Hence, The area of curved surface is 2992cm².

________________________________

If you are not able to see the answer properly kindly view the answer from website by the given link.↓↓

https://brainly.in/question/37372879

Similar questions