Math, asked by virendrayadav19478, 11 months ago

find the area of equilateral triangle whose altitude is 16 root 3​

Answers

Answered by AdithyaMahesh17
4

Answer:

256√3 cm²

Step-by-step explanation:

√3/2 × a = 16√3

√3 cancel on both sides.

a/2 = 16

a = 32

All the three sides measure 32 cm

Area of equilateral triangle = √3/4 × a²

= √3/4 × 32 × 32

= 256√3 cm²

Answered by Anonymous
4

Answer :-

Area of the equilateral tiangle is 256√3 units²

Explanation :-

Finding side of an equilateral triangle

Altitude of an equilateral triangle = 16√3 units

Also, Altitude of an equilateral triangle = √3 * ( a/2)

[Where a = Side of the equilateral triangle]

 \mathsf{ \implies16 \sqrt{3} =  \dfrac{ \sqrt{3} a}{2}  } \\  \\

 \mathsf{ \implies \dfrac{16 \sqrt{3} }{ \sqrt{3} } =  \dfrac{ a}{2}  } \\  \\

 \mathsf{ \implies16=  \dfrac{ a}{2}  } \\  \\

 \mathsf{ \implies16 \times 2=  a}\\  \\

 \mathsf{ \implies 32=  a}\\  \\

 \mathsf{ \implies a = 32}\\  \\

i.e Side of an equilateral triangle = 32 units

Finding the are af the equilateral triangle

Area of the equilateral triangle = (√3/4) * a²

[Where a = Side of the equilateral triangle]

 \mathsf{  =   \dfrac{ \sqrt{3} }{4} \times  {32}^{2} } \\  \\

 \mathsf{  =   \dfrac{1024 \sqrt{3} }{4}} \\  \\

 \mathsf{  =   256 \sqrt{3}}  \\  \\

Area of the equilateral tiangle is 256√3 units².

Similar questions