Math, asked by chetan97, 1 year ago

find the area of equilateral triangle whose perimeter is 60 CM

Answers

Answered by gaurav2013c
5
Perimeter = 60 cm

3* Side = 60 cm

Side of triangle = 20 cm

area = \frac{ \sqrt{3} }{4} {a}^{2} \\ = \frac{ \sqrt{3} }{4} \times 400 \\ = 100 \sqrt{3} \\ = 100 \times 1.732 \\ = 173.2 {cm}^{2}


Hope it will help you....... ☺

gaurav2013c: Hey bro please mark as brainliest if you liked the solution
Answered by Anonymous
3

Answer:

We have given that,

Perimeter = 60 cm

So, Semi Perimeter = \dfrac{60}{2} = 30 cm

Hence,the Length of each side will be :]

 \\ \sf a + a + a = 60  \\  \\

\\ \sf 3 a = 60  \\  \\

\\ \sf a  =  \dfrac{60}{3}  \\  \\

\purple{\sf a = 20 \: cm} \\

Now, we will find the area of equilateral triangle by given below formula :]

\bigstar\:\:\boxed{\underline{\underline  {\sf  Area = \sqrt{s(s - a)(s - b)(s - c)}}}} \:  \: \bigstar \\

Now, putting the given values in above formula we get :

: \implies\sf  Area = \sqrt{30(30 - 20)(30 - 20)(30- 20)} \\  \\

: \implies\sf  Area = \sqrt{30 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = \sqrt{3 \times 10 \times 10 \times 10 \times 10} \\  \\

: \implies\sf  Area = 10 \times 10 \sqrt{3}\\  \\

: \implies \underline{  \boxed{\sf  Area = 100 \sqrt{3} \: cm^{2} }} \\  \\

Similar questions