Math, asked by saurabh8720, 1 year ago

find the area of equilateral triangle whose side is 2 root 3 cm​

Answers

Answered by Anonymous
12

\purple\star\mathfrak\green{\large{\underline{\underline{Solution:-}}}}

  \mathfrak \red{Area  \: of  \: equilateral   \: \triangle} \mathfrak \pink{= }\mathfrak \blue{\frac{ \sqrt{3} }{4} \: s {}^{2}}

\red\star\mathfrak\purple{\large{\underline{\underline{Now\:, According\:to\: Question:-}}}}

 \mathfrak\purple{s} \mathfrak\pink {= } \mathfrak \orange{2 \sqrt{3}}

\blue\star\mathfrak\orange{\large{\underline{\underline{By\: substituting\:the\:values:-}}}}

 \mathfrak  \green{\implies} \mathfrak \purple{Area \: of \: equilateral \:  \triangle} \mathfrak \pink{ = } \mathfrak \orange{ \frac{ \sqrt{3} }{4} s {}^{2} }

  \mathfrak \green {\implies} \mathfrak \purple{Area  \: of \: equilateral \:  \triangle} \mathfrak \pink{ = } \mathfrak \orange{ \frac{ \sqrt{3} }{4} \times  2 \sqrt{3} }

  \red \star \mathfrak \green {\implies} \mathfrak \purple{Area  \: of \: equilateral \:  \triangle} \mathfrak \pink{ = } \mathfrak \orange{1.5 \: cm {}^2} \red \star \:

Answered by Anonymous
6

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

___________________________

Given :

Side of an equilateral triangle is 2√3 cm.

____________________________

To Find :

We have to find the area of the equilateral triangle.

____________________________

Solution :

We know the formula to find the area of the equilateral triangle.

\Large{\boxed{\boxed{\sf{Area = \frac{\sqrt{3}}{4} \times (Side)^2}}}}

\sf{\implies Area = \frac{\sqrt{3}}{4} \times (2\sqrt{3})^2} \\ \\ \sf{\implies Area = \frac{\sqrt{3}}{\cancel{4}} \times \cancel{12}} \\ \\ \sf{\implies Area = \sqrt{3} \times 3} \\ \\ \sf{\implies Area = 3\sqrt{3}} \\ \\ \sf{\therefore \: Area \: of \: equilateral \: triangle \: is \: 3\sqrt{3} \: cm^2}

Similar questions