Math, asked by 10aug2008, 17 days ago

find the area of following triangle whose side are 60, 153 CM, 111 CM​

Answers

Answered by sakshisharma2718
2

Step-by-step explanation:

  • a =60
  • b =153
  • c =111

then (s) = a+b+c/2

(s) =(60+153+111)/2

(s) =324/2=162

by \: heron \: formula \:  \\  \\ area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  =  \sqrt{162(162 - 60)(162 - 153)(162 - 111)}  \\  =  \sqrt{162 \times 102 \times 9 \times 51 }  \\  = 3 \times 17 \times 3 \times 2 \times 9 \\  = 81 \times  34 = 2754cm

hope it helps...and you also can appreciate my efforts by Mark me as Brainliest.

Answered by pdpooja100
3

{\large{ \underline{\underline{ \:  \maltese{\orange{\sf{ \: Given \: :- \: }}}}}}}

\begin{gathered} \\ \end{gathered}

  • $ide = 60 cm, 153 cm and 111 cm.

\begin{gathered} \\ \end{gathered}

{\large{ \underline{\underline{ \:  \maltese{\red{\sf{ \: To\:Find\: :- \: }}}}}}}

\begin{gathered} \\ \end{gathered}

  • Area = ?

\begin{gathered} \\ \end{gathered}

{\large{\underline{\underline{ \maltese{\pmb{\color{blue}{\sf{ \: SolutioN \: : -  \: }}}}}}}}

\begin{gathered} \\ \end{gathered}

\begin{gathered} \\ {\dag \: {\underline{\sf{ \: Calculating\:the \: Semi\:perimeter \: ; \: }}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{ \normalsize{\longmapsto{\sf{s=\dfrac{a+b+c}{2}}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\longmapsto{\sf{s=\dfrac{60+153+111}{2}}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\longmapsto{\sf{s \: =\dfrac{324}{2}}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\longmapsto{\sf{s=\cancel\dfrac{324}{2}}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\longmapsto{\sf{s=162}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\therefore{\underline{\boxed{ \color{purple}{\pmb{\sf{ \: Semi\:perimeter\:of\:triangle\:is\:162\:cm}}}}}}}}}}\\ \\ \end{gathered}

━─━─━─━─━─━─━─━─━─━─━─━─━━─━─━──━─━─━─━━─━─━─

\begin{gathered} \\{\dag \: {\underline{\sf{ \: Calculating\:the \: Area \: ; \: }}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\longmapsto{\sf{Area{\:triangle}=\sqrt{s(s-a)(s-b)(s-c)}}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\longmapsto{\sf{Area=\sqrt{162(162-60)(162-153)(162-111)}}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\longmapsto{\sf{Area=\sqrt{162(102)(9)(51)}}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\longmapsto{\sf{Area=\sqrt{7584516}=2754}}}}}}\\ \\ \end{gathered}

\begin{gathered} \\{\qquad{\quad{\normalsize{\therefore{\underline{\boxed{ \pmb{\sf{\purple{Area\:of\:triangle\:is\:2754cm^2}}}}}}}}}}\\ \\ \end{gathered}

━─━─━─━─━─━─━─━─━─━─━─━─━━─━─━──━─━─━─━━─━─━─

\begin{gathered} \\ \end{gathered}

\qquad{\quad{\therefore}} Area of given triangle is \bf{2754\:cm^2.}

\begin{gathered}\begin{gathered} \\ {\underline{\rule{280pt}{3pt}}}\\ \\ \end{gathered}\end{gathered}

Formula Used ::

{\begin{gathered} \\ \dashrightarrow {\boxed{ \bf{s=\dfrac{a+b+c}{2}}}} \bigstar \\ \\ \end{gathered}

\begin{gathered} \\ \dashrightarrow {\boxed{\bf{Area=\sqrt{s(s-a)(s-b)(s-c)}}}\bigstar \\ \end{gathered}

\begin{gathered}\begin{gathered} \\ {\underline{\rule{280pt}{7pt}}} \end{gathered}\end{gathered}

Similar questions