Math, asked by shahnoorsdq63, 7 months ago

Find the area of following triangles by heron 's formula and also find the length of the height corresponding its largest side 9cm, 12cm,15cm

Answers

Answered by simmi1122
0

Answer:

area of triangle=

Step-by-step explanation:

see attached pic.like if its helpful

give ne brianlist

Attachments:
Answered by jaidansari248
0

Answer:

side \: are \: : a = 9 \\ b = 12 \:  \:  \:  \:  \:  \:  \: c = 15 \\ area \:  =  \sqrt{s(s - a)(s - b)(s - c)}  \\ s =  \frac{a + b + c}{2}  \\  =  \frac{9 + 12 + 15}{2}  \\  =  \frac{36}{2}  = 18 \:  \\ area  =  \sqrt{18(18 - 12)(18 - 9)(18 - 15)}  \\   = \sqrt{18 \times 6 \times 9 \times 3 }  \\  =  \sqrt{(2 \times  {3}^{2}) \times (2 \times 3)  \times  {3}^{2} \times 3  }  \\  =  \sqrt{ {2}^{2}  \times  {3}^{2} \times  {3}^{2}  }  \\  = 2 \times 3 \times 3 = 18 \\

corresponding \: height \: of \: a \\  = h1 \\ corresponding \: height \: of \: b \\  = h2 \\ corresponding \: height \: of \: c \\  = h3 \\ area \:  =  \frac{a \times h1}{2}  =  \frac{b \times h2}{2}  \\  =  \frac{c \times h3}{2 }  \\ h1 =  \frac{area \:  \times 2}{a}  =  \frac{18 \times 2}{9}  = 4 \\ h2 =  \frac{area \:  \times 2}{b}  =  \frac{18 \times 2}{12}  =  3  \\ h3 =  \frac{area \times 2}{c}  =  \frac{18 \times 2}{15}  =  \frac{12}{5}

Similar questions