Math, asked by arshia93, 3 months ago

Find the area of given figure if angle B=90°​

Attachments:

Answers

Answered by maruthiprabhav
1

Answer:

6 root 35 +30

Step-by-step explanation:

construction, draw line AC

In Triangle ABC 5,12, 13 are AB, BC, CA, RESPECTIVELY

Apply ar (Right triangle)

ar \:  =  \frac{1}{2}  \times bh \:  \:  = 5 \times 6 = 30 \\

in triangle ADC, a=8

b=9

c=13

s =  \frac{a + b + c}{2}  =  \frac{30}{2}  = 15

Apply herons formula

ar =  \sqrt{s(s - a)(s  - b)(s - c)}  =  \sqrt{15 \times 2 \times 6 \times 7}  = 6 \sqrt{35}

thus \: total \: area \:  =  > 6 \sqrt[2]{35}  + 30

hope it helps u

Answered by Mitanshp
3

Step-by-step explanation:

6 root 35 +30

Step-by-step explanation:

construction, draw line AC

In Triangle ABC 5,12, 13 are AB, BC, CA, RESPECTIVELY

Apply ar (Right triangle)

\begin{gathered}ar \: = \frac{1}{2} \times bh \: \: = 5 \times 6 = 30 \\ \end{gathered}

ar=

2

1

×bh=5×6=30

in triangle ADC, a=8

b=9

c=13

s = \frac{a + b + c}{2} = \frac{30}{2} = 15s=

2

a+b+c

=

2

30

=15

Apply herons formula

ar = \sqrt{s(s - a)(s - b)(s - c)} = \sqrt{15 \times 2 \times 6 \times 7} = 6 \sqrt{35}ar=

s(s−a)(s−b)(s−c)

=

15×2×6×7

=6

35

thus \: total \: area \: = > 6 \sqrt[2]{35} + 30thustotalarea=>6

2

35

+30

hope it helps u

Similar questions