Math, asked by Somiyaprasad2797, 10 months ago

Find the area of isosceles triangle one of its equal sides is 'a' and other side is 'b' using herons formula

Answers

Answered by anindyaadhikari13
1

Step-by-step explanation:

Hope it will help you...Please mark this as the brainliest answer...

Attachments:
Answered by gjenagjena66
0

  {semi perimeter  =  \frac{a + a + b}{2}   =  \frac{2a + b}{2} = a +   \frac{b}{2}  herons  formula =  \sqrt{s(s - a)(s - b)(s - c)}  =  \sqrt{(a +  \frac{b}{2} )(a +  \frac{b}{2}  - a)(a +  \frac{b}{2}  - a)(a  +  \frac{b}{2}  - b})  \\  \\  =  \sqrt{(a +  \frac{b}{2})( \frac{b}{2} )( \frac{b}{2})(a -  \frac{b}{2} )  }  \\  \\ =  \frac{b}{2}  \sqrt{ {a}^{2}  -  { (\frac{b}{2}) }^{2} }  \\  \\  =  \frac{b}{2}   \sqrt{ {a}^{2}  -   \frac{ {b}^{2} }{4}  \\  \\  =  \frac{b}{2}  \sqrt{ \frac{4 {a}^{2} +  {b}^{2}  }{4} } \\  \\  =  \frac{b}{4}  \sqrt{4 {a}^{2}  -  {b}^{2} }

Similar questions