Math, asked by sriya7419, 4 months ago

Find the area of isosceles triangle whose equal side are 6cm,6cm,and 8cm

Answers

Answered by ImperialGladiator
12

Answer:

The area of the isosceles triangle is ⁸√5cm.

Step-by-step explanation:

Given side of the triangle :

  • 6cm, 6cm & 8cm

Find the area :

Step 1 : Calculate the semi-perimeter

Semi-perimeter : (sum of three sides ÷ 2)

→ (6 + 6 + 8) ÷ 2

→ 20 ÷ 2

→ 10cm.

Step 2 : Calculate the area :

By Heron's formula :

√s(s - a)(s - b)(s -c)

Where,

  • a, b, and c denotes the three respective sides of the triangle
  • s is the semi-perimeter.

So,

√10(10 - 6)(10 - 6)(10 - 8)

→ √10(4)(4)(2)

→ √320

→ ⁸√5 cm.

The area of the triangel is 5cm.

Answered by Sen0rita
22

Given : Equal sides of an isosceles triangle are 6cm, 6cm and 8cm respectively.

To Find : Area of the isosceles triangle.

⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀_____________________

Here

 \:  \:

  • first side of the triangle, a = 6
  • second side of the triangle, b = 6
  • third side of the triangle, c = 8

 \:

As we know that :

 \:

\star \: \underline{\boxed{\sf\purple{Area \: of \:  a \: triangle \:  =   \sqrt{s(s - a)(s - b)(s - c)}  }}}

 \:

★ Now, we'll find S (semi-perimeter) of the triangle.

 \:

\sf:\implies \: S_{(semi-perimeter)}  =  \dfrac{a + b + c}{2}  \\  \\  \\ \sf:\implies \: S_{(semi-perimeter)}  =  \frac{6 + 6 + 8}{2}  \\  \\  \\ \sf:\implies S_{(semi-perimeter)}   =  \cancel\frac{20}{2}  \\   \\  \\ \sf:\implies  \underline{\boxed{\mathfrak\purple{S_{(semi-perimeter)}   = 10}}}\bigstar

 \:

Now we've to find the area of the triangle.

So, put the values in the area of the triangle formula and solve.

 \:

 \sf:\implies \: Area_{(triangle)}  =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\  \sf:\implies Area_{(triangle)}  =  \sqrt{10(10 - 6)(10 - 6)(10 - 8)}  \\  \\  \\  \sf:\implies Area_{(triangle)}  =  \sqrt{10 \times 4 \times 4 \times 2}  \\  \\  \\  \sf:\implies Area_{(triangle)}  =  \sqrt{320}  \\  \\  \\ \sf:\implies \underline{\boxed{\mathfrak\purple{Area_{(triangle)} = 8 \sqrt{5}  {cm}^{2} }}}  \\  \\ \\   \\ \sf\therefore{\underline{Hence, \: the \: area \: of \: the \: isosceles \: triangle \: is  \: \bold{8 \sqrt{5}  {cm}^{2}. }}}

Similar questions