find the area of isosceles triangle whose equal side are 6cm,6cm,and 8 cm
Answers
Answer:
just sum the number 6+6+8 = 20
answer 20
Step-by-step explanation:
I hope it helps you
Given :
Isosceles triangle whose equal side are 6cm,6cm,and 8 cm.
To Find :
The area.
Solution :
Analysis :
First we have to find the perimeter and then the semiperimeter. After that using Heron's Formula, we can get the area.
Required Formula :
- Heron's Formula = √[s(s - a)(s - b)(s - c)]
where,
- s = Semiperimeter
- a = First Side
- b = Second Side
- c = Third Side
Explanation :
We are given all the three sides of a triangle. So,
Perimeter = Sum of all three sides
⇒ Perimeter = 6 + 6 + 8
⇒ Perimeter = 20
∴ Perimeter = 20 cm.
Semiperimeter :
Semiperimeter = Perimeter/2
⇒ Semiperimeter = 20/2
⇒ Semiperimeter = 10
∴ Semiperimeter = 10 cm.
Area :
Using Heron's Formula,
Heron's Formula = √[s(s - a)(s - b)(s - c)]
where,
- s = 10 cm
- a = 6 cm
- b = 6 cm
- c = 8 cm
Substituting the values,
⇒ Area = √[s(s - a)(s - b)(s - c)]
⇒ Area = √[10(10 - 6)(10 - 6)(10 - 8)]
⇒ Area = √[10(4)(4)(2)]
⇒ Area = √[10 × 4 × 4 × 2]
⇒ Area = √[10 × 4 × 4 × 2]
⇒ Area = √[5 × 2 × 2 × 2 × 2 × 2 × 2]
⇒ Area = 8√5
∴ Area = 8√5 cm².