Math, asked by sarab277, 1 year ago

find the area of isosceles triangle with perimeter 36 cm and base is 6 cm

Answers

Answered by SillySam
11
let each equal side be x cm.

\textbf{\underline{Perimeter of a triangle}} \underline{\textbf{ = sum of all three sides }}

Since, two sides are equal , then three sides become

x, x and 6 cm.

36 = x+x+6

36=2x+6

36-6=2x

30=2x

 \bf{ \frac{30}{2} = x}

15=x

 \bf{\underline{semiperimeter \: (s) = \frac{perimeter}{2}}}

 = \frac{36}{2}

 = 18 \: cm

\underline {\bf{area \: of \: triangle \: by \: herons \: formula \: -} }

 = \bf{ \sqrt{s(s - a)(s - b)(s - c)} }

 = \sqrt{18(18 - 15)(18 - 15)(18 - 6)}

 = \sqrt{18(3)(3)(12)}

 = \sqrt{3 \times 3 \times 2 \times 3 \times 3 \times 3 \times 2 \times 2}

 = 3 \times 3 \times 2 \sqrt{3 \times 2}

 = 18 \sqrt{6 \: }{cm {}^{2} }
Similar questions