Math, asked by mkjat, 1 year ago

find the area of minor segment whose chord subtends 120degree and radius of circle is 42cm.

Answers

Answered by Vaibhav111111111111
5
Radius of the circle = 14 cm

ΔAOB is isosceles as two sides are equal.

∴ ∠A = ∠B

Sum of all angles of triangle = 180°

∠A + ∠B + ∠C = 180°

⇒ 2 ∠A = 180° - 60°

⇒ ∠A = 120°/2

⇒ ∠A = 60°

Triangle is equilateral as ∠A = ∠B = ∠C = 60°

∴ OA = OB = AB = 14 cm

Area of equilateral ΔAOB = √3/4 × (OA)2 = √3/4 × 142 

                                          = (196√3)/4 cm2 = 84.87 cm2


Angle subtend at the centre by minor segment = 60°

Area of Minor sector making angle 60° = (60°/360°) × π r2 cm2

                                                                                     = (1/6) × 142 π  cm2 =  196/6 π  cm2

                                                  =  (196/6) × 3.14 cm2 = 102.57  cm2

 

Area of the minor segment = Area of Minor sector - Area of equilateral ΔAOB

                                            = 102.75  cm2 - 84.87 cm2 = 17.87 cm2


 

Angle made by Major sector = 360° - 60° = 300°

Area of the sector making angle 300° = (300°/360°) × π r2 cm2

                                                   = (5/6) × 142 π  cm2 =  980/6 π  cm2

                                                  =  (980/6) × 3.14 cm2 = 512.86  cm2

 

Area of major segment = Area of Minor sector + Area of equilateral ΔAOB

                                            = 512.86  cm2 + 84.87 cm2 = 597.73 cm2

Similar questions