Find the area of parallelogram determined by the vectors i +2j+3k and 3i-2j+k
Answers
Answer:
Area of the parallelogram is square units
Step-by-step explanation:
Formula used:
Area of parallelogram having adjacent sides is
Let
Area of the parallelogram is square units
Step-by-step explanation:
Formula used:
Area of parallelogram having adjacent sides \vec{a}\:and\:\vec{b}
a
and
b
is |\vec{a}\:X\:\vec{b}|∣
a
X
b
∣
Let
\vec{a}=\vec{i}+2\vec{j}+3\vec{k}
a
=
i
+2
j
+3
k
\vec{b}=3\vec{i}-2\vec{j}+\vec{k}
b
=3
i
−2
j
+
k
\begin{gathered}\vec{a}\:X\:\vec{b}=\left|\begin{array}{ccc}\vec{i}&\vec{j}&\vec{k}\\1&2&3\\3&-2&1\end{array}\right|\end{gathered}
a
X
b
=
∣
∣
∣
∣
∣
∣
∣
i
1
3
j
2
−2
k
3
1
∣
∣
∣
∣
∣
∣
∣
\vec{a}\:X\:\vec{b}=\vec{i}(2+6)-\vec{j}(1-9)+\vec{k}(-2-6)
a
X
b
=
i
(2+6)−
j
(1−9)+
k
(−2−6)
\vec{a}\:X\:\vec{b}=8\vec{i}+8\vec{j}-8\vec{k}
a
X
b
=8
i
+8
j
−8
k
\vec{a}\:X\:\vec{b}=8(\vec{i}+\vec{j}-\vec{k})
a
X
b
=8(
i
+
j
−
k
)
|\vec{a}\:X\:\vec{b}|=8\sqrt{1^2+1^2+(-1)^}
|\vec{a}\:X\:\vec{b}|=8\sqrt{1^2+1^2+(-1)^}
|\vec{a}\:X\:\vec{b}|=8\sqrt{3}∣
a
X
b
∣=8
3
Area of the parallelogram is 8\sqrt{3}8
3
square units